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Abstract. For linear dynamical systems (in continuous-time and discrete-time) we revisit and extend the concepts of hypocoercivity and
hypocontractivity and give a detailed analysis of the relations of these concepts to (asymptotic) stability, as well as (semi-)dissipativity and (semi-)-
contractivity, respectively. On the basis of these results, the short-time behavior of the propagator norm for linear continuous-time and discrete-time
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1. Introduction. In this paper we discuss different concepts that characterize the short and long time behavior of
linear continuous-time ordinary differential equations (ODEs)

𝑥′(𝑡) = 𝐀𝑐𝑥(𝑡) = −𝐁𝑥(𝑡) , 𝑥(0) = 𝑥0, 𝑡 ≥ 0, (1.1)

and discrete-time difference equations (DDEs)

𝑥𝑘+1 = 𝐀𝑑𝑥𝑘 , 𝑥0 = 𝑥0, 𝑘 ∈ ℕ0, (1.2)

with matrices 𝐀𝑐 ,𝐀𝑑 ∈ ℂ𝑛×𝑛.

It is well-known that the long-time behavior of solutions of (1.1) and (1.2) can be characterized via the spectral
properties of the matrices 𝐀𝑐 ,𝐀𝑑 or the solutions of Lyapunov equations [5, 13, 18, 19]. To understand the short-
time behavior of continuous-time systems much progress has recently been made for systems with a semi-dissipative
structure, i.e. systems where 𝐀𝑐 has a semidefinite symmetric part. For this subclass it has recently been observed in [2,
3] that the short- and long-time behavior can be characterized via the concept of hypocoercivity and the hypocoercivity
index. For this subclass also the analysis of the long-time behavior becomes simpler and more elegant.

In this paper we show that a similar concept of hypocontractivity and a hypocontractivity index is analogously
available in the discrete-time case and that it can be characterized via the polar decomposition of 𝐀𝑑 .

For both, the continuous- and discrete-time we present a systematic review and analysis of the different concepts
and show the subtle differences and similarities to the classical spectral concepts and illustrate these with numerous
examples. Furthermore, we present the close relationship of these concepts to classical controllability and observability
concepts in control theory.
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Note that we switch in the discussion of (1.1) between the classical notation with 𝐀𝑐 as is common in dynamical
systems and the notation with −𝐁 as is common in evolution equations.

In Section 2 we recall the concepts of (asymptotic) stability, (semi-)dissipativity, and hypocoercivity for continu-
ous-time systems that have been discussed in [3]. To better understand the decay behavior of solutions we extend the
concept of hypocoercivity to shifted hypocoercivity. We also show under which linear transformations of the system
these properties stay invariant.

In the second part of the paper, in Section 3 we derive the corresponding results for discrete-time systems and,
in particular, analyze the relation between (asymptotic) stability, (semi-)contractivity, and hypocontractivity as well as
scaled hypocontractivity.

The third part in Section 4 studies how the discussed properties are related under Cayley transformations that map
between continuous-time and discrete-time systems. We show that many properties including the hypocoercivity index
and hypocontractivity index map appropriately. However, in general, the shifted hypocoercivity and scaled hypocon-
tractivity indices are not mapped into each other. Computationally feasible staircase forms to check hypocoercivity
for accretive matrices and hypocontractivity for semi-contractive matrices, and to determine the associated indices are
discussed in the Appendix.

We use the following notation: The conjugate transpose of a matrix 𝐂 ∈ ℂ𝑛×𝑛 is denoted by 𝐂𝖧. Positive definite-
ness (semi-definiteness) of a Hermitian matrix 𝐂 is denoted by 𝐂 > 0 (𝐂 ≥ 0).

2. Stability, semi-dissipativity, and hypocoercivity for continuous-time systems. In this section we recall
some properties of linear continuous-time systems and their relationship. Let us give a simplified definition of sta-
bility, for the general definition see e.g. [5, 13].

DEFINITION 2.1. The trivial solution 𝑥 ≡ 0 of (1.1) is called (Lyapunov) stable if all solutions of (1.1) are bounded
for 𝑡 ≥ 0, and it is called asymptotically stable if it is stable and all solutions of (1.1) converge to 0 for 𝑡 → ∞.

For linear systems (1.1) a solution is (asymptotically) stable if and only if the trivial solution 𝑥 ≡ 0 is (asymptot-
ically) stable. Therefore, if the trivial solution 𝑥 ≡ 0 of (1.1) is (asymptotically) stable, then we call the system (1.1)
(asymptotically) stable.

It is well-known, see e.g. [5, 13], that (1.1) is (Lyapunov) stable if all eigenvalues of 𝐀𝑐 have non-positive real part
and the eigenvalues on the imaginary axis are semi-simple, and it is asymptotically stable if all eigenvalues of 𝐀𝑐 have
negative real part.

A concept closely related to stability is that of (semi-)dissipativity. Writing 𝐀𝑐 as the sum of its Hermitian part
𝐀𝐻 ∶= (𝐀𝑐 + 𝐀𝖧

𝑐 )∕2 and skew-Hermitian part 𝐀𝑆 ∶= (𝐀𝑐 − 𝐀𝖧
𝑐 )∕2, we have the following definition, [8, Definition

4.1.1].

DEFINITION 2.2. A matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛 is called dissipative (resp. semi-dissipative) if the Hermitian part 𝐀𝐻 is
negative definite (resp. negative semi-definite). For a (semi-)dissipative matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛, the associated ODE (1.1)
is called (semi-)dissipative Hamiltonian ODE. Alternatively, a matrix 𝐁 = −𝐀𝑐 ∈ ℂ𝑛×𝑛 is called accretive (or positive
semi-dissipative) if its Hermitian part 𝐁𝐻 is positive semi-definite.

An nice property of a semi-dissipative Hamiltonian ODE (1.1) is that it is (Lyapunov) stable, since for all solutions
of (1.1) we have

d
d𝑡
‖𝑥(𝑡)‖2 = ⟨𝐀𝑐𝑥(𝑡) , 𝑥(𝑡)⟩ + ⟨𝑥(𝑡) , 𝐀𝑐𝑥(𝑡)⟩ = ⟨𝑥(𝑡) , (𝐀𝖧

𝑐 + 𝐀𝑐)𝑥(𝑡)⟩ ≤ 0, 𝑡 ≥ 0, (2.1)
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i.e. the Euclidean norm (which may serve as a Lyapunov function), is non-increasing.

The converse is in general not true, because the Hermitian part of a matrix 𝐀𝑐 associated with a stable system (1.1)
does not have to be negative semi-definite, as the following example shows:

EXAMPLE 2.3. Consider the matrix

𝐁 =
[

3 3
−3 −1

]

so that 𝐀𝑐 = −𝐁 has eigenvalues 𝜆 = −1 ± 𝑖
√

5, but the Hermitian part 𝐀𝐻 is indefinite with eigenvalues 𝜆𝐀𝐻
min = 1

and 𝜆𝐀𝐻
max = −3. Hence, the norm of solutions of (1.1) may increase initially at the rate 𝑒𝑡.

REMARK 2.4 (Logarithmic Norm). Since the flow generated by (1.1) is given by the matrix exponential 𝑒𝐀𝑐 𝑡, the
long-time behavior of the propagator norm ‖𝑒𝐀𝑐 𝑡

‖, or to be precise—its exponential rate—is determined by the spectral
abscissa

𝛼(𝐀𝑐) ∶= max{ℜ(𝜆) | 𝜆 is an eigenvalue of 𝐀𝑐} , (2.2)

see e.g. [28].
In contrast, the exponential rate of the short-time behavior of ‖𝑒𝐀𝑐 𝑡

‖ is determined by the logarithmic norm: The
logarithmic norm of a matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛 with respect to an inner product is defined as

𝜇(𝐀𝑐) ∶= sup
‖𝑥‖=1

ℜ(⟨𝑥 , 𝐀𝑐𝑥⟩) = max
‖𝑥‖=1

ℜ(⟨𝑥 , 𝐀𝑐𝑥⟩) , (2.3)

i.e. 𝜇(𝐀𝑐) is the maximal real part of the numerical range of 𝐀𝑐 . Thus, the solutions 𝑥(𝑡) of (1.1) satisfy d
d𝑡‖𝑥(𝑡)‖

2 =
⟨𝑥 , (𝐀𝖧

𝑐 + 𝐀𝑐)𝑥⟩ ≤ 2𝜇(𝐀𝑐) ‖𝑥(𝑡)‖2, which implies that

‖𝑥(𝑡)‖ ≤ 𝑒𝜇(𝐀𝑐 ) 𝑡
‖𝑥0‖ for 𝑡 ≥ 0 . (2.4)

In particular, a matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛 is semi-dissipative if and only if 𝜇(𝐀𝑐) ≤ 0.

A third related concept is that of hypocoercivity for matrices and the associated hypocoercivity index, which was
introduced originally in the context of linear operators see [1, 6, 29].

DEFINITION 2.5 (Definition 2.5 of [2]). A matrix 𝐂 ∈ ℂ𝑛×𝑛 is called coercive (or strictly accretive) if its Hermitian
part 𝐂𝐻 is positive definite, and it is called hypocoercive if the spectrum of 𝐂 lies in the open right half plane. A
matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛 is called negative hypocoercive if the spectrum of 𝐀𝑐 lies in the open left half plane.

The relationship between positive semi-dissipativity and hypocoercivity is characterized by the following result.

PROPOSITION 2.6 ([20, Lemma 3.1], [1, Lemma 2.4 with Proposition 1(B2), (B4)]). Let 𝐁 ∈ ℂ𝑛×𝑛 be (positive)
semi-dissipative. Then, 𝐁 has an eigenvalue on the imaginary axis if and only if 𝐁𝐻𝑣 = 0 for some eigenvector 𝑣
of 𝐁𝑆 .

Note that, due to the assumptions, purely imaginary eigenvalues of semi-dissipative matrices are necessarily semi-
simple, see also [21, 22]. Therefore, an accretive matrix 𝐁 is hypocoercive if and only if no eigenvector of the skew-
Hermitian part lies in the kernel of the Hermitian part. The latter condition is well known in control theory, and
equivalent to the following statements:

LEMMA 2.7. Let 𝐁 ∈ ℂ𝑛×𝑛 be accretive. Then the following are equivalent:
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(B1) There exists 𝑚 ∈ ℕ0 such that

rank[𝐁𝐻 ,𝐁𝑆𝐁𝐻 ,… , (𝐁𝑆 )𝑚𝐁𝐻 ] = 𝑛 . (2.5)

(B2) There exists 𝑚 ∈ ℕ0 such that

𝐓𝑚 ∶=
𝑚
∑

𝑗=0
𝐁𝑗
𝑆𝐁𝐻 ((𝐁𝑆 )𝖧)𝑗 > 0 . (2.6)

(B3) No eigenvector of 𝐁𝑆 lies in the kernel of 𝐁𝐻 .
(B4) rank[𝜆𝐈 − 𝐁𝑆 ,𝐁𝐻 ] = 𝑛 for every 𝜆 ∈ ℂ , in particular for every eigenvalue 𝜆 of 𝐁𝑆 .

Moreover, the smallest possible 𝑚 ∈ ℕ0 in (B1) and (B2) coincide.

Proof. The equivalence of (B1), (B3), and (B4) and its proof are classical, see e.g. [9, Theorem 6.2.1] for real
matrices, but its proof extends verbatim to complex matrices; see also [1, Proposition 1]. The equivalence of (B1) and
(B2) follows from Lemma B.1 in the Appendix, setting 𝐃 ∶= 𝐁𝐻 and 𝐂 ∶= 𝐁𝑆 .

REMARK 2.8. In Lemma 2.7 we could have alternatively stated the equivalence of the following conditions, that
are equivalent to the corresponding ones in Lemma 2.7.

(B1’) There exists 𝑚 ∈ ℕ0 such that

rank[𝐁𝐻 ,𝐁𝐁𝐻 ,… ,𝐁𝑚𝐁𝐻 ] = 𝑛 .

(B2’) There exists 𝑚 ∈ ℕ0 such that

𝑚
∑

𝑗=0
𝐁𝑗𝐁𝐻 (𝐁𝖧)𝑗 > 0 .

(B2”) There exists 𝑚 ∈ ℕ0 such that

𝑚
∑

𝑗=0
(𝐁𝖧)𝑗𝐁𝐻𝐁𝑗 > 0 . (2.7)

(B3’) No eigenvector of 𝐁 lies in the kernel of 𝐁𝐻 .
(B4’) rank[𝜆𝐈 − 𝐁,𝐁𝐻 ] = 𝑛 for every 𝜆 ∈ ℂ , in particular for every eigenvalue 𝜆 of 𝐁.

This is easily seen, since every eigenvector of 𝐁 that is in the kernel of 𝐁𝐻 is immediately an eigenvector of 𝐁𝑆 ;
and conversely, every eigenvector of 𝐁𝑆 that is in the kernel of 𝐁𝐻 is also an eigenvector of 𝐁, see [21]. It also follows
directly from the staircase forms presented in [3].

REMARK 2.9. The equivalence of properties stated in Proposition 2.6, Lemma 2.7 and Remark 2.8 show that e.g.
also the coercivity of the associated matrix 𝐓𝑚 in (2.6) could have been used to define hypocoercivity for accretive
matrices (in the finite-dimensional setting). Only future research of bounded and unbounded accretive operators on
infinite-dimensional Hilbert spaces will decide which is the appropriate characterization for accretive operators to be
hypocoercive i.e. to generate a uniformly exponentially stable 𝐶0-semigroup.

DEFINITION 2.10 ([2, Definition 3.1]). Suppose that 𝐁 ∈ ℂ𝑛×𝑛 is accretive and hypocoercive. The hypocoercivity
index (HC-index) 𝑚𝐻𝐶 of the matrix 𝐁 is defined as the smallest integer 𝑚 ∈ ℕ0 such that (2.6) holds.
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Note that for 𝐁 ∈ ℂ𝑛×𝑛 (by the Cayley-Hamilton theorem applied to (B1’)) it follows immediately that the hypoco-
ercivity index (if it exists) is bounded by 𝑛 − 1. More precisely, for a finite hypocoercivity index we even have
𝑚𝐻𝐶 ≤ dim ker(𝐁𝐻 ) ≤ 𝑛 − 1 (see Remark 4(b) in [1]). Furthermore, a hypocoercive matrix 𝐁 is coercive if and
only if 𝑚𝐻𝐶 = 0.

REMARK 2.11. Hypocoercive matrices are often called positively stable, whereas negative hypocoercive matrices
are often called stable. Note also that in [3, Definition 3], the HC-index for a semi-dissipative matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛 is
defined as the HC-index of its accretive counterpart 𝐁 = −𝐀𝑐 . We do not make use of this convention here.

Phenomenologically, the HC-index of an accretive matrix 𝐁 describes the structural complexity of the intertwin-
ing of the Hermitian part 𝐁𝐻 and skew-Hermitian part 𝐁𝑆 (see [1] for illustrating examples). Moreover, for a semi-
dissipative Hamiltonian ODE (1.1), the HC-index characterizes the short-time decay of the spectral norm of the prop-
agator of the associated semigroup 𝑆(𝑡) ∶= 𝑒−𝐁𝑡 ∈ ℂ𝑛×𝑛, 𝑡 ≥ 0.

PROPOSITION 2.12 ([2, Theorem 2.7]). Let the ODE system (1.1) be semi-dissipative Hamiltonian with (accretive)
matrix 𝐁 ∈ ℂ𝑛×𝑛.

(a) The (accretive) matrix 𝐁 is hypocoercive (with hypocoercivity index 𝑚𝐻𝐶 ∈ ℕ0) if and only if

‖𝑒−𝐁𝑡‖2 = 1 − 𝑐𝑡𝑎 + (𝑡𝑎+1) for 𝑡 ∈ [0, 𝜖), (2.8)

for some 𝑎, 𝑐, 𝜖 > 0. In this case, necessarily 𝑎 = 2𝑚𝐻𝐶 + 1.
(b) Consider the ODE (1.1) with 𝜖-dependent system matrix 𝐵 = 𝜖𝐴+𝐶 where 𝜖 ∈ ℝ. If 𝐵 = 𝜖𝐴+𝐶 is hypocoercive

for 𝜖 ≠ 0, then the coefficient 𝑐 = 𝑐𝜖 in the Taylor expansion of the propagator norm (2.8) satisfies

0 < 𝑐2 𝜖
2𝑚𝐻𝐶 ≤ 𝑐 = 𝑐𝜖 ≤ 𝑐1 𝜖

2𝑚𝐻𝐶 , (2.9)

for some positive constants 𝑐1, 𝑐2 > 0 independent of 𝜖 ≠ 0.

REMARK 2.13.

∙ For genuine semi-dissipative Hamiltonian ODE systems (1.1) (such that 𝜇(𝐀𝑐) = 0), the estimate (2.4) based
on the logarithmic norm 𝜇(𝐀𝑐) yields only ‖𝑥(𝑡)‖ ≤ ‖𝑥0‖ for 𝑡 ≥ 0.

∙ For semi-dissipative Hamiltonian ODE systems (1.1), (a lower bound for) the characterization of the HC-index
via the short-time behavior of the propagator norm in (2.8) may also be derived by considering a suitable
energy-preserving system, see e.g. [25]. However, the proof of Proposition 2.12 in [2] yields quantitative
lower and upper bounds for the multiplicative constant 𝑐 in (2.8). These explicit bounds allow to conclude
the structural result in Proposition 2.12 b.

In Figure 2.1 we illustrate the relationship between the different concepts that we have discussed so far.

REMARK 2.14. As one of the main applications of the analysis of the three discussed concepts is the study of
(semi-)dissipative Hamiltonian systems, a natural concept that could be added to the description of the dynamical
system is that of a Hamiltonian or energy function. In the abstract setting that we have discussed so far, the natural
energy function is the Euclidean norm of the solution. Further energy functions will be discussed below.

REMARK 2.15 (logarithmically optimal norms). For a Hermitian matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛, its logarithmic norm 𝜇(𝐀𝑐)
and its spectral abscissa 𝛼(𝐀𝑐) are equal, 𝜇(𝐀𝑐) = 𝛼(𝐀𝑐). In general, however, only the inequality 𝛼(𝐀𝑐) ≤ 𝜇(𝐀𝑐)
holds, see e.g. [26, Lemma 1c]. A norm is logarithmically optimal with respect to a matrix 𝐀𝑐 if its spectral abscissa
𝛼(𝐀𝑐) and logarithmic norm 𝜇(𝐀𝑐) are equal, i.e. 𝛼(𝐀𝑐) = 𝜇(𝐀𝑐). Thus the Euclidean norm is logarithmically optimal
for all Hermitian matrices.
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B ∈ Cn×n x′ = −Bx is stable

[
9 −3
3 −1

]

λ1 = 0
λ2 = 8

[
1/2 −1
1 −1/2

]

λ± = ±i
√
3
2

B is hypocoercive

x′ = −Bx is asymptotically stable

[
19 −6
6 −1

]

λ1 = 1
λ2 = 17

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

BH ≥ 0

[
0 0
0 0

][
0 −1
1 0

]

λ± = ±i
−B is semi-dissipative

BH > 0
B is coercive

[
1 0
0 1

]

−B is dissipative

FIGURE 2.1. Illustration of the relationship between sets of matrices 𝐁 ∈ ℂ𝑛×𝑛 which are (hypo)coercive (circular discs), have a positive
semi-definite Hermitian part (region within smaller ellipse), and those for which the solutions of the ODE system 𝑥′ = −𝐁𝑥 are stable (region within
bigger ellipse), respectively.

To analyze the relationship between the different concepts further, in the next section we first discuss the question
by which transformations of (1.1) we can switch between the different concepts and which transformations leave the
different properties invariant.

2.1. Linear transformations that preserve stability, semi-dissipativity, and hypocoercivity. In this section
we discuss the classes of linear transformations that preserve the concepts of stability, semi-dissipativity, and hypoco-
ercivity, and also those that map between the different concepts, see also e.g. [15, 16] for some references. The natural
classes of linear transformations that preserve the different properties and the HC-index (in case of accretive matrices)
are conjugate transposition 𝐁 → 𝐁𝖧, due to Definition 2.10 and Lemma 2.7; unitary congruence transformations
𝐁 → 𝐔𝐁𝐔𝖧 for a unitary matrix 𝐔, due to Definition 2.10 and Lemma 2.7; scaling 𝐁 → 𝑡𝐁 for any 𝑡 ∈ ℝ+, due to
Definition 2.10 and Lemma 2.7; and, as we will show in Lemma 2.20 below, the inversion of accretive hypocoercive
matrices.

It is a classical result, see e.g. [5], how to construct a similarity transformation of a “stable” matrix 𝐁 such that the
transformed matrix is accretive: The origin 𝑥 ≡ 0 is a stable state of system (1.1) if and only if there exists a positive
definite matrix 𝐏 = 𝐏𝖧 ∈ ℂ𝑛×𝑛 that satisfies the Lyapunov matrix inequality

𝐁𝖧𝐏 + 𝐏𝐁 ≥ 0 . (2.10)

A congruence transformation with the Hermitian matrix 𝐏−1∕2, i.e. the inverse of the positive definite square root of 𝐏,
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yields

0 ≤ 𝐏−1∕2(𝐁𝖧𝐏 + 𝐏𝐁)𝐏−1∕2 = 𝐏−1∕2𝐁𝖧𝐏1∕2 + 𝐏1∕2𝐁𝐏−1∕2 = 2
(

𝐏1∕2𝐁𝐏−1∕2)
𝐻 . (2.11)

Hence, the matrix

𝐁̂ ∶= 𝐏1∕2𝐁𝐏−1∕2 (2.12)

is accretive. Moreover, the change of basis 𝑥̃(𝑡) ∶= 𝐏1∕2𝑥(𝑡) transforms (1.1) into a semi-dissipative Hamiltonian ODE
system of the form

𝑥̃′(𝑡) = −
(

𝐏1∕2𝐁𝐏−1∕2)𝑥̃(𝑡) = −𝐁̂ 𝑥̃(𝑡) . (2.13)

Although similarity transformations 𝐁 → 𝐒𝐁𝐒−1 for invertible matrices 𝐒 ∈ ℂ𝑛×𝑛 preserve the spectrum (and
hence (negative) hypocoercivity), they may change the HC-index of accretive matrices:

EXAMPLE 2.16. The matrix

𝐁 ∶=
[

1 −1
1 0

]

(2.14)

is accretive and hypocoercive with 𝑚𝐻𝐶 = 1 (having eigenvalues 𝜆± = (1 ± 𝑖
√

3)∕2). The positive definite Hermitian

matrix 𝐏 =
[

2 −1
−1 2

]

satisfies the continuous-time Lyapunov equation 𝐁𝖧𝐏 + 𝐏𝐁 = 2ℜ(𝜆)𝐏 = 𝐏. The similarity

transformation (2.12) yields a coercive matrix

𝐁̂ = 𝐏1∕2𝐁𝐏−1∕2 = 1
2

[

1 −
√

3
√

3 1

]

,

hence 𝑚𝐻𝐶 (𝐁̂) = 0.

In a similar way, non-unitary congruence transformations 𝐁 → 𝐐𝐁𝐐𝖧 for some nonsingular matrix 𝐐 ∈ ℂ𝑛×𝑛

may change the HC-index as the following example demonstrates.

EXAMPLE 2.17. Consider the accretive matrix

𝐁 =
[

𝑖 0
0 1

]

.

The matrix 𝐁 has an eigenvalue 𝑖, hence it is not hypocoercive. A congruence transformation with the (non-unitary)
matrix

𝐐 =
[

1 0
1 1

]

yields 𝐐𝐁𝐐𝖧 =
[

𝑖 𝑖
𝑖 1 + 𝑖

]

=
[

0 0
0 1

]

+ 𝑖
[

1 1
1 1

]

,

which is again accretive (due to Sylvester’s inertia theorem, see e.g. [10]). However, the matrix 𝐐𝐁𝐐𝖧 has eigenvalues
1
2 + 𝑖 (1 ±

√

3
2 ), and is hypocoercive with HC-index 𝑚𝐻𝐶 = 1.

As we have already discussed, changing the HC-index also changes the short-time behavior of the solutions of the
dynamical system (1.1).
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FIGURE 2.2. For a solution 𝑥(𝑡) of the ODE (1.1) with 𝐁 =
[

1 −1
1 0

]

, the Euclidean norm ‖𝑥(𝑡)‖2 (blue line) and the weighted Euclidean

norm ‖𝑥(𝑡)‖𝐏 with 𝐏 =
[

2 −1
−1 2

]

(orange line) are plotted. The norm of the solution ‖𝑥(𝑡)‖2 has horizontal tangents (at some point 𝑡0), whereas

the weighted norm ‖𝑥(𝑡)‖𝐏 does not have horizontal tangents (due to our choice of 𝐏).

EXAMPLE 2.18. Consider the matrix 𝐁 in Example 2.3. In agreement with Proposition 2.12, (the norm of)
solutions of the ODE (1.1) may have horizontal tangents (at any point 𝑡0 ≥ 0) with local behavior ‖𝑥(𝑡)‖ = ‖𝑥(𝑡0)‖ −
𝑐(𝑡 − 𝑡0)3 + ((𝑡 − 𝑡0)4) for some 𝑐 > 0. Proceeding as in [6, Lemma 4.3], the similarity transformation (2.12) with

𝐏 =
[

3 2
2 3

]

yields a coercive matrix 𝐁̂ = 𝐏1∕2𝐁𝐏−1∕2 =

[

1
√

5
−
√

5 1

]

.

Accordingly, (the norm of) solutions of the associated ODE (2.13) cannot have horizontal tangents (see Figure 2.2).

REMARK 2.19. We note that solutions 𝐏 to the Lyapunov inequality (2.10) are typically not unique, and one can
use this freedom to determine solutions that optimize certain robustness measures like the distance to instability, see
e.g. [7, 12, 23].
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It is an important observation that semi-dissipativity, hypocoercivity and the HC-index stay invariant when the
inverse of a matrix is taken:

LEMMA 2.20. Let 𝐁 ∈ ℂ𝑛×𝑛.

1. If 𝐁 is hypocoercive then 𝐁 is invertible and 𝐁−1 is hypocoercive.
2. If 𝐁 is accretive and invertible then it follows that

a. If 𝑣 ∈ ker(𝐁𝐻 ) ⊂ ℂ𝑛 then 𝐁𝑣 ∈ ker((𝐁−1)𝐻 ).
b. 𝐁−1 is accretive.
c. dim ker(𝐁𝐻 ) = dim ker((𝐁−1)𝐻 ).

3. If 𝐁 is accretive and hypocoercive then 𝐁 and 𝐁−1 have the same HC-index.

Proof.

1. A matrix 𝐁 is hypocoercive if all eigenvalues have positive real-part. Hence, the matrix 𝐁 is invertible, and
since the eigenvalues of the inverse of 𝐁−1 are the inverses of the eigenvalues of 𝐁, they have positive real-part and
𝐁−1 is hypocoercive.

2a. Writing 𝐁 as 𝐁 = 𝐁𝐻 + 𝐁𝑆 , it follows that if 𝑣 ∈ ker(𝐁𝐻 ) then 𝐁𝑣 = 𝐁𝑆𝑣 = −𝐁𝖧𝑣. Thus,

(𝐁−1)𝐻 (𝐁𝑣) = 1
2

(

𝐁−1(𝐁𝑣) + (𝐁−1)𝖧(𝐁𝑣)
)

= 1
2

(

𝑣 − (𝐁𝖧)−1(𝐁𝖧𝑣)
)

= 0 . (2.15)

2b. To prove that 𝐁−1 is again accretive, we show the following identity: For all vectors 𝑤 ∈ ℂ𝑛, define 𝑣 ∶=
𝐁−1𝑤, such that

⟨𝑤 , (𝐁−1)𝐻𝑤⟩ = 1
2⟨𝑤 , (𝐁−1 + (𝐁−1)𝖧)𝑤⟩ = 1

2 ⟨𝐁𝑣 , (𝐁−1 + 𝐁−𝖧)𝐁𝑣⟩

= 1
2⟨𝑣 , 𝐁𝖧(𝐁−1 + 𝐁−𝖧)𝐁𝑣⟩ = 1

2⟨𝑣 , (𝐁𝖧 + 𝐁)𝑣⟩ = ⟨𝑣 , 𝐁𝐻𝑣⟩ ≥ 0 ,
(2.16)

since 𝐁 is accretive. Hence, 𝐁−1 is accretive as well.

2c. Due to part 2a. and a similar statement with the roles of 𝐁 and 𝐁−1 exchanged, 𝐁 is a bijection from ker(𝐁𝐻 )
to ker((𝐁−1)𝐻 ).

3. By assumption, the matrix 𝐁 has a finite HC-index 𝑚𝐻𝐶 which is the smallest integer such that (2.5) holds or
equivalently, due to (2.7), that

𝑚𝐻𝐶
⋂

𝑗=0
ker

(

𝐁𝐻𝐁𝑗) = {0}

holds, see also [1, Remark 4]. Hence, there exists a vector 𝑣0 ≠ 0 such that

𝐁𝑗𝑣0 ∈ ker(𝐁𝐻 ) , 𝑗 ∈ {0,… , 𝑚𝐻𝐶 − 1} and 𝐁𝑚𝐻𝐶𝑣0 ∉ ker(𝐁𝐻 ) . (2.17)

Due to 2b., it follows that

𝐁𝑗+1𝑣0 ∈ ker((𝐁−1)𝐻 ) , 𝑗 ∈ {0,… , 𝑚𝐻𝐶 − 1} and 𝐁𝑚𝐻𝐶+1𝑣0 ∉ ker((𝐁−1)𝐻 ) . (2.18)

The matrix 𝐁−1 is hypocoercive and accretive with finite HC-index 𝑚̃𝐻𝐶 ∶= 𝑚𝐻𝐶 (𝐁−1) and hence, there exists a vector
𝑤0 ≠ 0 such that

(𝐁−1)𝑗𝑤0 ∈ ker((𝐁−1)𝐻 ) , 𝑗 ∈ {0,… , 𝑚̃𝐻𝐶 − 1} and (𝐁−1)𝑚̃𝐻𝐶𝑤0 ∉ ker((𝐁−1)𝐻 ) . (2.19)
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To show that 𝑚𝐻𝐶 = 𝑚𝐻𝐶 (𝐁) = 𝑚𝐻𝐶 (𝐁−1) = 𝑚̃𝐻𝐶 , suppose that 𝑣0 is a vector in ℂ𝑛 satisfying (2.18) with 𝑚𝐻𝐶 =
𝑚𝐻𝐶 (𝐁). Then 𝑤0 ∶= 𝐁𝑚𝐻𝐶𝑣0 satisfies 𝑤0 ≠ 0, hence, (2.19) implies that 𝑚𝐻𝐶 (𝐁−1) ≥ 𝑚𝐻𝐶 (𝐁). Exchanging the
roles of 𝐁 and 𝐁−1 shows that 𝑚𝐻𝐶 (𝐁−1) ≤ 𝑚𝐻𝐶 (𝐁). Altogether, 𝑚𝐻𝐶 (𝐁) = 𝑚𝐻𝐶 (𝐁−1) holds.

In this section we have discussed linear transformations and their effects on the concepts of hypocoercivity, stability
and semi-dissipativity. In the next section we discuss how the (concept of the) HC-index for accretive matrices can be
transferred to general matrices.

2.2. Shifted hypocoercivity index for general matrices. A possibility to turn a general system (1.1) into a semi-
dissipative Hamiltonian system is to shift the spectrum. Consider the transformation

𝑣(𝑡) ∶= exp(𝜆𝐁𝐻
min𝑡)𝑥(𝑡) , (2.20)

where 𝜆𝐁𝐻
min is the minimal (real) eigenvalue of the Hermitian matrix 𝐁𝐻 . Then, 𝑣(𝑡) satisfies the ODE

𝑣′(𝑡) = − (𝐁 − 𝜆𝐁𝐻
min𝐈)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=∶𝐁̃

𝑣(𝑡) ,

where the Hermitian part 𝐁̃𝐻 of 𝐁̃ = 𝐁 − 𝜆𝐁𝐻
min𝐈 is indeed positive semi-definite. Of course, the hypocoercivity index

of matrix 𝐁̃ is typically modified by the shift parameter 𝜆.

REMARK 2.21. The transformation (2.20) can be motivated as follows: The propagator for ODE (1.1) with
𝐀𝑐 = −𝐁 satisfies estimate (2.4) based on the logarithmic norm 𝜇(𝐀𝑐). Therefore, for 𝑡 ≥ 0,

1 ≥ ‖𝑒𝐀𝑐 𝑡
‖𝑒−𝜇(𝐀𝑐 ) 𝑡 = ‖𝑒(𝐀𝑐−𝜇(𝐀𝑐 )𝐈) 𝑡

‖ = ‖𝑒−(𝐁−𝜆
𝐁𝐻
min 𝐈) 𝑡

‖,

since the logarithmic norm 𝜇(𝐀𝑐) can also be characterized as

𝜇(𝐀𝑐) ∶= sup
‖𝑥‖=1

ℜ(⟨𝑥 , 𝐀𝑐𝑥⟩) = sup
‖𝑥‖=1

⟨𝑥 , 1
2 (𝐀

𝖧
𝑐 + 𝐀𝑐)𝑥⟩ = 𝜆𝐀𝐻

max = −𝜆𝐁𝐻
min ,

where 𝜆𝐀𝐻
max is the maximal (real) eigenvalue of the Hermitian matrix 𝐀𝐻 .

In view of this shifting property, for general linear time-invariant ODE systems (1.1) with matrix 𝐁 ∈ ℂ𝑛×𝑛, we
will define a shifted hypocoercivity index which characterizes “the algebraic factor“ in the decay of its propagator norm
for short time, see Corollary 2.26 below. As a first step, we decompose the matrix 𝐁 ∈ ℂ𝑛×𝑛.

LEMMA 2.22. Let 𝐁 ∈ ℂ𝑛×𝑛 with Hermitian part 𝐁𝐻 , and let 𝜆𝐁𝐻
min be the minimal (real) eigenvalue of the

Hermitian matrix 𝐁𝐻 (which could be negative or non-negative). Then, the matrix

𝐁̃ ∶= 𝐁 − 𝜆𝐁𝐻
min𝐈 (2.21)

is accretive and, if 𝐁̃ is hypocoercive, has an HC-index 𝑚𝐻𝐶 (𝐁̃) greater than 0.
In particular, 𝐁̃ is hypocoercive if and only if no eigenvector of 𝐁𝐻 associated with 𝜆𝐁𝐻

min is an eigenvector of the
skew-Hermitian part 𝐁𝑆 of 𝐁.

Proof. If we decompose 𝐁 = 𝐁𝐻 + 𝐁𝑆 into its Hermitian part 𝐁𝐻 and its skew-Hermitian part 𝐁𝑆 , then 𝐁𝐻 has
only real eigenvalues. Consider the matrix 𝐁̃ ∶= 𝐁 − 𝜆𝐈 for 𝜆 ∈ ℝ. Then 𝜆 = 𝜆𝐁𝐻

min is the only value for which the
Hermitian part of 𝐁̃ is positive semi-definite and singular (hence, if 𝐁̃ is hypocoercive then 𝑚𝐻𝐶 (𝐁̃) > 0).
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The hypocoercivity condition for 𝐁̃ follows from Lemma 2.7, (B3): Matrix 𝐁̃ fails to be hypocoercive if and only if
an eigenvector 𝑣 of 𝐁𝑆 (which is not changed by the shift) is in the kernel of (𝐁̃+ 𝐁̃𝖧)∕2 = 𝐁𝐻 −𝜆𝐁𝐻

min𝐈, or equivalently
𝑣 is an eigenvector of 𝐁𝐻 to the eigenvalue 𝜆𝐁𝐻

min.

DEFINITION 2.23. Let 𝐁 ∈ ℂ𝑛×𝑛 with Hermitian part 𝐁𝐻 , and let 𝜆𝐁𝐻
min be the minimal (real) eigenvalue of the

Hermitian matrix 𝐁𝐻 . If the accretive matrix 𝐁̃ ∶= 𝐁 − 𝜆𝐁𝐻
min𝐈 is hypocoercive, then its HC-index 𝑚𝐻𝐶 ∈ ℕ is called

the shifted hypocoercivity index (SHC-index) 𝑚𝑆𝐻𝐶 of 𝐁.

By definition, an accretive matrix has a (finite) HC-index 𝑚𝐻𝐶 if and only if it is positively stable, see also [2,
3]. However, a general (constant) matrix can have a finite SHC-index 𝑚𝑆𝐻𝐶 without being positively stable, see the
following example and Figure 2.1.

EXAMPLE 2.24. Consider the matrix

𝐁 ∶=
[

9 −3
3 −1

]

which has the eigenvalues 𝜆1 = 0 and 𝜆2 = 8 and hence is not positively stable. Its Hermitian part 𝐁𝐻 = diag(9,−1)
has the minimal eigenvalue 𝜆𝐁𝐻

min = −1. Then, in (2.21) we have

𝐁̃ = 𝐁 − 𝜆𝐁𝐻
min𝐈 =

[

10 −3
3 0

]

which has eigenvalues 1 and 9. Therefore, 𝑚𝑆𝐻𝐶 (𝐁) = 𝑚𝐻𝐶 (𝐁̃) = 1.

We have the following characterization for accretive matrices to have a (finite) SHC-index.

COROLLARY 2.25. Let 𝐉,𝐑 ∈ ℂ𝑛×𝑛 satisfy 𝐑 = 𝐑𝖧 and 𝐉 = −𝐉𝖧 and let 𝜆min be the minimal eigenvalue of 𝐑.
Define 𝐑̃ ∶= 𝐑 − 𝜆min𝐈. Then the following conditions are equivalent:

(B1) There exists 𝑚 ∈ ℕ0 such that

rank([𝐑, 𝐉𝐑,… , 𝐉𝑚𝐑] − 𝜆min[𝐈, 𝐉,… , 𝐉𝑚]) = 𝑛 . (2.22)

(B2) There exists 𝑚 ∈ ℕ0 such that

𝑚
∑

𝑗=0
𝐉𝑗𝐑(𝐉𝖧)𝑗 > 𝜆min

𝑚
∑

𝑗=0
𝐉𝑗(𝐉𝖧)𝑗 . (2.23)

(B3) No eigenvector of 𝐉 is an eigenvector to 𝜆min of 𝐑.
(B4) rank[𝜆𝐈 − 𝐉,𝐑 − 𝜆min𝐈] = 𝑛 for every 𝜆 ∈ ℂ, in particular for every eigenvalue 𝜆 of 𝐉.

Moreover, the smallest possible 𝑚 ∈ ℕ0 in (B1) and (B2) coincide.

Proof. The Hermitian matrix 𝐑̃ = 𝐑 − 𝜆min𝐈 is positive semi-definite. Hence, the statement (which is stated for
the original matrix 𝐑 using 𝐑̃ = 𝐑 − 𝜆min𝐈) follows from Lemma 2.7.

In the following result we show that we can use the SHC-index to characterize the short-time behavior of the prop-
agator norm for general linear time-invariant systems of ODEs. For this we denote the solution semigroup pertaining
to (1.1) by 𝑆(𝑡) ∶= 𝑒−𝐁𝑡 ∈ ℂ𝑛×𝑛, 𝑡 ≥ 0.
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COROLLARY 2.26. Consider an ODE (1.1) with system matrix 𝐁 ∈ ℂ𝑛×𝑛. If 𝐁 has a finite SHC-index 𝑚𝑆𝐻𝐶 (𝐁),
then

‖𝑒−𝐁𝑡‖2 = 𝑒−𝜆
𝐁𝐻
min 𝑡

(

1 − 𝑐𝑡𝑎 + (𝑡𝑎+1)
)

for 𝑡 → 0+ , (2.24)

where 𝜆𝐁𝐻
min is the smallest eigenvalue of the Hermitian matrix 𝐁𝐻 , 𝑎 = 2𝑚𝑆𝐻𝐶 (𝐁) + 1 (≥ 3), and 𝑐 > 0.

Proof. Write 𝐁 as in (2.21) and compute the HC-index 𝑚𝐻𝐶 (𝐁̃) (≥ 1) of the accretive matrix 𝐁̃ = 𝐁 − 𝜆𝐁𝐻
min𝐈.

Using the decomposition (2.21) yields

𝑒−𝐁𝑡 = 𝑒−(𝜆
𝐁𝐻
min 𝐈+𝐁̃)𝑡 = 𝑒−𝜆

𝐁𝐻
min 𝑡 𝑒−𝐁̃𝑡 , such that ‖𝑒−𝐁𝑡‖2 = 𝑒−𝜆

𝐁𝐻
min 𝑡

‖𝑒−𝐁̃𝑡‖2 . (2.25)

If an accretive matrix 𝐁̃ is hypocoercive, i.e. having a finite HC-index 𝑚𝐻𝐶 (𝐁̃) (or equivalently 𝐁 has a finite SHC-
index 𝑚𝑆𝐻𝐶 (𝐁)) then (2.24) follows from Proposition 2.12.

In this section we have gathered and extended results about stable, hypocoercive, and semi-dissipative matrices.
These results have analoga for discrete-time systems that are studied in the next section.

3. Stability, semi-contractivity and hypocontractivity for discrete-time systems. In this section we study the
analogous concepts for linear discrete-time systems

𝑥𝑘+1 = 𝐀𝑑𝑥𝑘 , 𝑘 ∈ ℕ0 , (3.1)

for a given matrix 𝐀𝑑 ∈ ℂ𝑛×𝑛.

REMARK 3.1. While the stability analysis in discrete-time systems is well studied in linear algebra and operator
theory [19] using spectral properties and discrete-time Lyapunov equations, we proceed by studying hypocontractivi-
ty—the analogon to the concept of hypocoercivity in continuous time—and relating to these classical concepts.

DEFINITION 3.2. The trivial solution 𝑥 ≡ 0 of the discrete-time system (3.1) is called stable if all solutions of (3.1)
are bounded for 𝑘 ∈ ℕ0, and it is called asymptotically stable if it is stable and all solutions of (3.1) converge to 0 for
𝑘 → ∞.

For linear systems (3.1) a solution is (asymptotically) stable if and only if the trivial solution 𝑥 ≡ 0 is (asymptot-
ically) stable. Therefore, if the trivial solution 𝑥 ≡ 0 of (3.1) is (asymptotically) stable then the linear system (3.1) is
called (asymptotically) stable.

It is well-known that (3.1) is stable if all eigenvalues of 𝐀𝑑 have modulus less or equal than one and the eigenvalues
of modulus one are semi-simple (see [13, Theorem 3.3.11]); and it is asymptotically stable if all eigenvalues of 𝐀𝑑 have
modulus strictly less than one.

DEFINITION 3.3. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 have eigenvalues 𝜆𝑗 , 𝑗 = 1,… , 𝑛. The spectral radius of 𝐀𝑑 is defined as
𝜌(𝐀𝑑) ∶= max{|𝜆1| ,… , |𝜆𝑛|}, i.e. as the largest absolute value of its eigenvalues.

Hence, a discrete-time system (3.1) is asymptotically stable if the spectral radius of 𝐀𝑑 is strictly less than one,
𝜌(𝐀𝑑) < 1.

An alternative characterization of (asymptotic) stability can be given via the discrete-time Lyapunov (or Stein)
equation: System (3.1) is asymptotically stable if and only if, for all positive definite Hermitian matrices 𝐐

𝐀𝖧
𝑑𝐏𝐀𝑑 − 𝐏 = −𝐐 (3.2)

12



has a solution 𝐏 = 𝐏𝖧 > 0, see [13, Theorem 3.3.49] which is formally given by

𝐏 =
∞
∑

𝑗=0
(𝐀𝖧

𝑑 )
𝑗𝐐𝐀𝑗

𝑑 , (3.3)

see [13, (89b) in §3.3.5]. In the discrete-time case the concept of hypocoercivity is replaced by that of hypocontractivity,
which we introduce in the next subsection.

3.1. Hypocontractive matrices and the hypocontractivity index. For 𝐀𝑑 ∈ ℂ𝑛×𝑛 the spectral norm satisfies

‖𝐀𝑑‖2 =
√

‖𝐀𝖧
𝑑𝐀𝑑‖2 =

√

𝜆max
(

𝐀𝖧
𝑑𝐀𝑑

)

= 𝜎max(𝐀𝑑) , (3.4)

where 𝜆max
(

𝐀𝖧
𝑑𝐀𝑑

)

denotes the largest eigenvalue of the positive semi-definite Hermitian matrix 𝐀𝖧
𝑑𝐀𝑑 and 𝜎max(𝐀𝑑)

is the largest singular value of 𝐀𝑑 . Then, the estimate ‖𝐀𝑛
𝑑‖2 ≤ ‖𝐀𝑑‖

𝑛
2 for 𝑛 ∈ ℕ yields that 𝜎max(𝐀𝑑) ≤ 1 is a

sufficient condition for the stability of (3.1). However, 𝜎max(𝐀𝑑) ≤ 1 is not a necessary condition for (3.1) to be stable.

EXAMPLE 3.4. The eigenvalues of

𝐀𝑑(𝛼) = 𝛼
[

1 −2
0 −1

]

, 𝛼 ∈ ℝ , (3.5)

are ±𝛼. Hence, the discrete-time system (3.1) with matrix 𝐀𝑑 in (3.5) is stable if and only if 𝛼 ∈ [−1, 1]. But the matrix

𝐀𝖧
𝑑𝐀𝑑 = 𝛼2

[

1 −2
−2 5

]

(3.6)

has positive eigenvalues 𝜇± = 𝛼2(3 ±
√

8) and singular values 𝜎± =
√

𝜇± with 𝜎max(𝐀𝑑) = 𝜎+. Thus, 𝜎max(𝐀𝑑) ≤ 1

holds if |𝛼| ≤ (3 +
√

8)−1∕2 ≤ 1∕2 which is strictly less than one. Hence in this example, the condition 𝜎max(𝐀𝑑) ≤ 1
is sufficient but not necessary to ensure the stability of (3.1).

In the following we will need a result relating singular values and eigenvalues.

PROPOSITION 3.5. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 have singular values 𝜎1 ≥ … ≥ 𝜎𝑛 ≥ 0 (such that 𝜎max(𝐀𝑑) = 𝜎1) and
eigenvalues 𝜆𝑗 , 𝑗 = 1,… , 𝑛 being ordered as |𝜆1| ≥ … ≥ |𝜆𝑛|. Then, |𝜆1| ≤ 𝜎1. Moreover, if 𝐀𝑑 is nonsingular, then
|𝜆𝑛| ≥ 𝜎𝑛 > 0.

Proof. The statements follow from the bounds in [14, Theorem 5.6.9].

We then have the following discrete-time analogon of semi-dissipativity.

DEFINITION 3.6 ([8, Definition 4.1.2]). Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 and let 𝜎max(𝐀𝑑) be the largest singular value (the spectral
norm) of 𝐀𝑑 . We call 𝐀𝑑 contractive if 𝜎max(𝐀𝑑) < 1; and we call 𝐀𝑑 semi-contractive if 𝜎max(𝐀) ≤ 1.

Note that sometimes 𝐀𝑑 is called contractive if 𝜎max(𝐀𝑑) ≤ 1; and 𝐀𝑑 is called strictly contractive if 𝜎max(𝐀𝑑) < 1,
see e.g. [14, p. 493]. Other related notions are (semi-)convergent matrices, and power-bounded matrices, see [14, p.
180].

In the following, we consider the class of semi-contractive matrices 𝐀𝑑 and present a characterization when (3.1)
is (asymptotically) stable. For this we need a concept that corresponds to hypocoercivity in the continuous-time case.

DEFINITION 3.7. A matrix 𝐀𝑑 ∈ ℂ𝑛×𝑛 is called hypocontractive if all eigenvalues of 𝐀𝑑 have modulus strictly less
than one.
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Consequently, a discrete-time system (3.1) is asymptotically stable if and only if the system matrix 𝐀𝑑 is hypocon-
tractive. We can also characterize those semi-contractive matrices 𝐀 which are actually hypocontractive:

PROPOSITION 3.8. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be semi-contractive. Then, 𝐀𝑑 has an eigenvalue of modulus one if and only if
some eigenvector 𝑣 of 𝐀𝑑 satisfies 𝑣 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).

Proof. Since 𝐀𝑑 is semi-contractive, the Hermitian matrix 𝐈 − 𝐀𝖧
𝑑𝐀𝑑 is positive semi-definite. Moreover, if 𝐀𝑑

has an eigenvalue 𝜆 of modulus |𝜆| = 1 with eigenvector 𝑣 ≠ 0, then

0 ≤ ⟨𝑣 , (𝐈 − 𝐀𝖧
𝑑𝐀𝑑)𝑣⟩ = ‖𝑣‖2 − ‖𝐀𝑑𝑣‖

2 = ‖𝑣‖2(1 − |𝜆|2) = 0 .

Therefore, 𝑣 is in the kernel of the positive semi-definite Hermitian matrix 𝐈 − 𝐀𝖧
𝑑𝐀𝑑 .

Conversely, if some eigenvector 𝑣 of 𝐀𝑑 (associated to an eigenvalue 𝜆) satisfies 𝑣 ∈ ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑), then

0 = ⟨𝑣 , (𝐈 − 𝐀𝖧
𝑑𝐀𝑑)𝑣⟩ = ‖𝑣‖2 − ‖𝐀𝑑𝑣‖

2 = ‖𝑣‖2(1 − |𝜆|2) ,

and hence, the eigenvalue 𝜆 has modulus one.

REMARK 3.9. In the operator theory setting the matrix (𝐈 − 𝐀𝖧
𝑑𝐀𝑑)1∕2 is often called the defect operator of the

semi-contractive 𝐀𝑑 and the closure of its image is the defect space with its dimension being called the defect index
𝑑(𝐀𝑑). The defect operator and its index are a measure for the distance of an operator from being unitary. See e.g.
[27].

We again have an equivalent characterization in terms of properties from control theory:

LEMMA 3.10. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be semi-contractive. Then the following conditions are equivalent:

(D1) There exists 𝑚 ∈ ℕ0 such that

rank[(𝐈 − 𝐀𝖧
𝑑𝐀𝑑),𝐀𝖧

𝑑 (𝐈 − 𝐀𝖧
𝑑𝐀𝑑),… , (𝐀𝖧

𝑑 )
𝑚(𝐈 − 𝐀𝖧

𝑑𝐀𝑑)] = 𝑛 . (3.7)

(D2) There exists 𝑚 ∈ ℕ0 such that

𝐃𝑚 ∶=
𝑚
∑

𝑗=0
(𝐀𝖧

𝑑 )
𝑗(𝐈 − 𝐀𝖧

𝑑𝐀𝑑)𝐀
𝑗
𝑑 > 0 . (3.8)

(D3) No eigenvector of 𝐀𝑑 lies in the kernel of (𝐈 − 𝐀𝖧
𝑑𝐀𝑑).

(D4) rank[𝜆𝐈 − 𝐀𝖧
𝑑 , 𝐈 − 𝐀𝖧

𝑑𝐀𝑑] = 𝑛 for every 𝜆 ∈ ℂ, in particular for every eigenvalue 𝜆 of 𝐀𝖧
𝑑 .

Moreover, the smallest possible 𝑚 ∈ ℕ0 in (D1) and (D2) coincide.

Proof. Like Lemma 2.7, this result follows from Theorem 6.2.1 of [9] and Lemma B.1 in the Appendix.

REMARK 3.11. In control theory, conditions (D1), (D3), and (D4) in Lemma 3.10 are equivalent characterizations
of the controllability of the pair (𝐀𝖧

𝑑 , 𝐈 − 𝐀𝖧
𝑑𝐀𝑑), or the dynamical system

𝑥𝑘+1 = 𝐀𝖧
𝑑𝑥𝑘 + (𝐈 − 𝐀𝖧

𝑑𝐀𝑑)𝑢𝑘.

There is always also the dual concept of observability which in this case would correspond to the controllability of
(𝐀𝑑 , 𝐈 − 𝐀𝑑𝐀𝖧

𝑑 ). A dual result to Lemma 3.10 can then be formulated with this pair. Based on this pair, in [25] a
similar result has been derived (in different terminology). A similar result for the continuous-time case follows from
[24].
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If we compare Lemma 3.10 with Lemma 2.7, then we need to substitute 𝐁𝑆 with 𝐀𝖧
𝑑 , and 𝐁𝐻 with 𝐈 − 𝐀𝖧

𝑑𝐀𝑑 ,
respectively. Using Lemma 3.10 (D2), we then define the hypocontractivity index.

DEFINITION 3.12. For semi-contractive matrices 𝐀𝑑 ∈ ℂ𝑛×𝑛, we define the hypocontractivity index or discrete
HC-index (dHC-index) 𝑚𝑑𝐻𝐶 as the smallest integer 𝑚 ∈ ℕ0 (if it exists) such that (3.8) holds.

REMARK 3.13. The hypocontractivity index is sometimes also called the norm-one index, see [11], where it is
shown that this index is finite if and only if the spectral radius of 𝐀𝑑 is strictly smaller than one.

Clearly, a semi-contractive matrix 𝐀𝑑 is contractive if and only if 𝑚𝑑𝐻𝐶 = 0. Since (3.8) is a telescopic sum,
we have that 𝐃𝑚 = 𝐈 − (𝐀𝖧

𝑑 )
𝑚+1𝐀𝑚+1

𝑑 and thus if a semi-contractive matrix 𝐀𝑑 ∈ ℂ𝑛×𝑛 is hypocontractive with in-
dex 𝑚𝑑𝐻𝐶 ∈ ℕ0, then 𝐀𝑚𝑑𝐻𝐶+1

𝑑 is contractive. Conversely, if a semi-contractive matrix 𝐀𝑑 ∈ ℂ𝑛×𝑛 satisfies that 𝐀𝑚
𝑑 is

contractive for some 𝑚 ∈ ℕ, then 𝐀𝑑 is hypocontractive with index 𝑚𝑑𝐻𝐶 ≤ 𝑚 − 1.

The following result may be considered as a discrete counterpart of the short-time decay behavior from Proposition
2.12.

THEOREM 3.14. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be semi-contractive and hypocontractive. Its (finite) hypocontractivity index is
𝑚𝑑𝐻𝐶 ∈ ℕ0 if and only if

‖𝐀𝑗
𝑑‖2 = 1 for all 𝑗 = 1,… , 𝑚𝑑𝐻𝐶 , and ‖𝐀𝑚𝑑𝐻𝐶+1

𝑑 ‖2 < 1 . (3.9)

Proof. The spectral norm ‖𝐂‖2 of a matrix 𝐂 ∈ ℂ𝑛×𝑛, i.e. the operator norm induced by the Euclidean norm on ℂ𝑛

is given by ‖𝐂‖2 = max𝑤∈ℂ𝑛∶ ‖𝑤‖=1 ‖𝐂𝑤‖2. If a matrix 𝐀𝑑 is semi-contractive, then the estimates ‖𝐀𝑑‖2 ≤ 1 and
‖𝐀𝑗

𝑑‖2 ≤ ‖𝐀𝑑‖
𝑗
2 ≤ 1 hold for all 𝑗 ∈ ℕ. Thus, for vectors 𝑤 ∈ ℂ𝑛 with ‖𝑤‖2 = 1, we have

⟨𝑤 , (𝐀𝖧
𝑑 )

𝑗𝐀𝑗
𝑑𝑤⟩ = ⟨𝐀𝑗

𝑑𝑤 , 𝐀𝑗
𝑑𝑤⟩ = ‖𝐀𝑗

𝑑𝑤‖

2
2 ≤ 1 = ⟨𝑤 , 𝑤⟩ ,

such that 0 ≤ ⟨𝑤 , (𝐈 − (𝐀𝖧
𝑑 )

𝑗𝐀𝑗
𝑑)𝑤⟩. Therefore, for all 𝑚 ∈ ℕ0,

𝐃𝑚 =
𝑚
∑

𝑗=0
(𝐀𝖧

𝑑 )
𝑗(𝐈 − 𝐀𝖧

𝑑𝐀𝑑)𝐀
𝑗
𝑑 = 𝐈 − (𝐀𝖧

𝑑 )
𝑚+1𝐀𝑚+1

𝑑 ≥ 0

and hence, the semi-contractive matrix 𝐀𝑑 has (finite) hypocontractivity index 𝑚𝑑𝐻𝐶 if and only if (3.9) holds.

We summarize the relationship between the different concepts discussed in this section in Figure 3.1.

3.2. Polar decomposition. In [3] a computationally feasible procedure has been presented to check the conditions
of Lemma 2.7 in the continuous-time case via a staircase form under unitary congruence transformations. A similar
procedure can be derived in the discrete-time case. It is based on polar decomposition, see e.g. [14, Theorem 7.3.1],
which is the discrete-time analogon of the additive splitting of a matrix into its Hermitian and skew-Hermitian part:

PROPOSITION 3.15 (Polar decomposition). Let 𝐀𝑑 ∈ ℂ𝑛×𝑛.

(a) There exist positive semi-definite Hermitian matrices 𝐏𝑑 ,𝐐𝑑 ∈ ℂ𝑛×𝑛 and a unitary matrix 𝐔𝑑 ∈ ℂ𝑛×𝑛 such
that

𝐀𝑑 = 𝐏𝑑𝐔𝑑 = 𝐔𝑑𝐐𝑑 . (3.10)

The factors 𝐏𝑑 , 𝐐𝑑 are uniquely determined as 𝐏𝑑 = (𝐀𝑑𝐀𝖧
𝑑 )

1∕2 and 𝐐𝑑 = (𝐀𝖧
𝑑𝐀𝑑)1∕2. If 𝐀𝑑 is nonsingular,

then 𝐔𝑑 = 𝐏−1
𝑑 𝐀𝑑 = 𝐀𝑑𝐐−1

𝑑 is uniquely determined (as well).
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Ad ∈ Cn×n

[
1 2
0 1

]

λ± = 1

xk+1 = Adxk is stable

[
1 −1
1 0

]

λ± = 1
2 ± i

√
3
2

σ1 = 3
2 +

√
5
2

Ad is hypocontractive

xk+1 = Adxk is asymptotically stable

[
0 2
0 0

]

λ± = 0
σ1 = 2

[
0 1
0 0

]

λ± = 0
σ1 = 1

AH
dAd ≤ I

[
1 0
0 1

]

Ad is semi-contractive

AH
dAd < I

[
0 0
0 0

]

Ad is contractive

FIGURE 3.1. Relationship between sets of matrices 𝐀𝑑 ∈ ℂ𝑛×𝑛 which are (hypo)contractive (circular discs), semi-contractive (region within
smaller ellipse) and those for which the discrete-time system 𝑥𝑘+1 = 𝐀𝑑𝑥𝑘 is stable (region within bigger ellipse), respectively.

(b) If 𝐀𝑑 is real, then the factors 𝐏𝑑 , 𝐐𝑑 and 𝐔𝑑 may be taken to be real.

Consider a stable discrete-time system (3.1) with matrix 𝐀𝑑 . Hence, all eigenvalues of matrix 𝐀𝑑 have modulus
less or equal than one. Then, the polar decomposition (3.10) yields that the (largest) singular values of 𝐀𝑑 , 𝐏𝑑 and 𝐐𝑑
are the same, since 𝐀𝑑𝐀𝖧

𝑑 = 𝐏𝑑𝐏𝖧
𝑑 and 𝐀𝖧

𝑑𝐀𝑑 = 𝐐𝖧
𝑑𝐐𝑑 .

An immediate consequence is that a matrix 𝐀𝑑 ∈ ℂ𝑛×𝑛 with polar decomposition (3.10) is semi-contractive if
and only if the spectra of 𝐏𝑑 and 𝐐𝑑 (which coincide) are contained in [0, 1]. We can rephrase the statement of
Proposition 3.8 as follows:

PROPOSITION 3.16. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be semi-contractive with polar decomposition 𝐀𝑑 = 𝐔𝑑𝐐𝑑 and 𝐐𝑑 =
(𝐀𝖧

𝑑𝐀𝑑)1∕2. Then, 𝐀𝑑 has an eigenvalue of modulus one (and hence 𝐀𝑑 is not hypocontractive) if and only if some
eigenvector 𝑣 of 𝐔𝑑 satisfies 𝑣 ∈ ker(𝐈 −𝐐𝑑).

Proof. For the forward direction we assume that the eigenvalue equation 𝐀𝑑𝑣 = 𝜆𝑣 holds for some 𝜆 with |𝜆| = 1
and 𝑣 ∈ ℂ𝑛 ⧵ {0}. Then, Proposition 3.8 implies that 𝑣 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑), i.e. 0 = (𝐈 − 𝐀𝖧
𝑑𝐀𝑑)𝑣 = (𝐈 +𝐐𝑑)(𝐈 −𝐐𝑑)𝑣

which holds if and only if 0 = (𝐈 − 𝐐𝑑)𝑣, such that 0 = 𝐔𝑑(𝐈 − 𝐐𝑑)𝑣 = 𝐔𝑑𝑣 − 𝜆𝑣. Hence, 𝑣 ∈ ker(𝐈 − 𝐐𝑑) is an
eigenvector of 𝐔𝑑 .

Conversely, let 𝑤 be an eigenvector of 𝐔𝑑 , i.e. 𝐔𝑑𝑤 = 𝜆𝑤 with |𝜆| = 1, that satisfies (𝐈 − 𝐐𝑑)𝑤 = 0. Then
0 = 𝐔𝑑(𝐈 −𝐐𝑑)𝑤 = 𝜆𝑤 − 𝐀𝑑𝑤.

Note that, for semi-contractive matrices𝐀𝑑 , eigenvalues with modulus one are necessarily semi-simple. Therefore,
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a semi-contractive matrix 𝐀𝑑 (with polar decomposition 𝐀𝑑 = 𝐔𝑑𝐐𝑑) is hypocontractive if and only if no eigenvector
of 𝐀𝑑 lies in the kernel of the positive semi-definite Hermitian matrix 𝐈 −𝐐𝑑 .

Using this relationship, we formulate an analogous result to Lemma 3.10, in terms of matrices appearing in polar
decompositions. It follows again from Theorem 6.2.1 of [9] and Lemma B.1:

LEMMA 3.17. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be semi-contractive with polar decomposition 𝐀𝑑 = 𝐔𝑑𝐐𝑑 (i.e. with 𝐔𝑑 unitary,
𝐐𝑑 semi-contractive Hermitian, and 𝐐2

𝑑 = 𝐀𝖧
𝑑𝐀𝑑). Then the following conditions are equivalent:

(D1’) There exists 𝑚 ∈ ℕ0 such that

rank[(𝐈 −𝐐2
𝑑),𝐔

𝖧
𝑑 (𝐈 −𝐐2

𝑑),… , (𝐔𝖧
𝑑 )

𝑚(𝐈 −𝐐2
𝑑)] = 𝑛 . (3.11)

(D2’) There exists 𝑚 ∈ ℕ0 such that

𝐃̂𝑚 ∶=
𝑚
∑

𝑗=0
(𝐔𝖧

𝑑 )
𝑗(𝐈 −𝐐2

𝑑)𝐔
𝑗
𝑑 > 0 . (3.12)

(D3’) No eigenvector of 𝐔𝑑 lies in the kernel of 𝐈 −𝐐2
𝑑 .

(D4’) rank[𝜆𝐈 − 𝐔𝖧
𝑑 , 𝐈 −𝐐2

𝑑] = 𝑛 for every 𝜆 ∈ ℂ, in particular for every eigenvalue 𝜆 of 𝐔𝖧
𝑑 .

Moreover, the smallest possible 𝑚 ∈ ℕ0 in (D1’) and (D2’) coincide.

Note that (D3) and (D3’) are equivalent, due to Proposition 3.16 and since ker(𝐈−𝐐𝑑) = ker(𝐈−𝐐2
𝑑). Consequently,

all conditions of the Lemmata 3.10 and 3.17 are equivalent and the smallest possible values of 𝑚 coincide.

3.3. Scaled hypocontractivity index. The analogon to the shifted hypocoercivity index is obtained by scaling.

LEMMA 3.18. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be a nonzero matrix, and let 𝜎max(𝐀𝑑) be the maximal singular value of 𝐀𝑑 . Then,
the matrix

𝐀̃𝑑 ∶= (𝜎max(𝐀𝑑))−1𝐀𝑑 (3.13)

is semi-contractive and, if 𝐀̃𝑑 is hypocontractive, has a discrete HC-index 𝑚𝑑𝐻𝐶 (𝐀̃𝑑) greater than 0.

Furthermore, 𝐀̃𝑑 is hypocontractive if and only if the matrices in the polar decomposition of 𝐀𝑑 = 𝐔𝑑𝐐𝑑 satisfy
that no eigenvector of 𝐐𝑑 = (𝐀𝖧

𝑑𝐀𝑑)1∕2 associated with the eigenvalue 𝜎max(𝐀𝑑) is an eigenvector of 𝐔𝑑 .

Proof. Consider the matrix 𝐀̃𝑑(𝜎) ∶= 𝜎−1𝐀𝑑 for 𝜎 > 0. Then 𝜎 = 𝜎max(𝐀𝑑) is the only value such that the largest
singular value of 𝐀̃𝑑(𝜎) is one, since

𝜎max(𝐀̃𝑑) =
√

𝜆max(𝐀̃
𝖧
𝑑 𝐀̃𝑑) =

√

𝜆max(𝐀
𝖧
𝑑𝐀𝑑)∕𝜎max(𝐀𝑑) = 1 .

Consequently, if the scaled matrix 𝐀̃𝑑 is hypocontractive then its discrete HC-index 𝑚𝑑𝐻𝐶 (𝐀̃𝑑) is greater than 0.

To prove the final statement we consider the polar decomposition of 𝐀𝑑 in the form 𝐀𝑑 = 𝐔𝑑𝐐𝑑 . Then, 𝐀̃𝑑 =
(𝜎max(𝐀𝑑))−1𝐀𝑑 has the polar decomposition 𝐀̃𝑑 = 𝐔𝑑𝐐̃𝑑 with the same unitary matrix 𝐔𝑑 , and 𝐐̃𝑑 ∶=
(𝜎max(𝐀𝑑))−1𝐐𝑑 . Due to Proposition 3.16, 𝐀̃𝑑 is hypocontractive if and only if no eigenvector 𝑣 of 𝐔𝑑 is in the kernel
of 𝐈 − 𝐐̃𝑑 . The latter is equivalent to 𝑣 being an eigenvector of 𝐐̃𝑑 to the eigenvalue one, or 𝑣 being an eigenvector of
𝐐𝑑 to the eigenvalue 𝜎max(𝐀𝑑).
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properties continuous-time system discrete-time system

evolution 𝑥′ = 𝐀𝑐𝑥 for 𝑡 ≥ 0 𝑥𝑘+1 = 𝐀𝑑𝑥𝑘 for 𝑘 ∈ ℕ0
condition for ℜ(𝜆) < 0 for all 𝜆 ∈ Λ(𝐀𝑐), |𝜆| < 1 for all 𝜆 ∈ Λ(𝐀𝑑),
asymptotic stability i.e. negative hypocoercive i.e. hypocontractive
matrix decomposition 𝐀𝑐 = 𝐀𝑆 + 𝐀𝐻 polar: 𝐀𝑑 = 𝐏𝑑𝐔𝑑 = 𝐔𝑑𝐐𝑑
sufficient stability 𝐀𝐻 ≤ 0, 𝜎max(𝐀𝑑) ≤ 1 ⇔ Λ(𝐐𝑑) ⊂ [0, 1],
condition i.e. semi-dissipative i.e. semi-contractive
Kalman rank condition rank[𝐀𝐻 ,… , ((𝐀𝑆 )𝖧)𝑚𝐀𝐻 ] rank[(𝐈 −𝐐2

𝑑),… , (𝐔𝖧
𝑑 )

𝑚(𝐈 −𝐐2
𝑑)]

= 𝑛 = 𝑛

HC-condition
𝑚
∑

𝑗=0
((𝐀𝑆 )𝖧)𝑗(−𝐀𝐻 )𝐀𝑗

𝑆 > 0
𝑚
∑

𝑗=0
(𝐔𝖧

𝑑 )
𝑗(𝐈 −𝐐2

𝑑)𝐔
𝑗
𝑑 > 0

eigenvector condition no EV of 𝐀𝑆 in ker(𝐀𝐻 ) no EV of 𝐔𝑑 in ker(𝐈 −𝐐2
𝑑)

TABLE 3.1
Relation between concepts for continuous-time and discrete-time systems, see also Figures 2.1 and 3.1. Λ(𝐀) denotes here the spectrum of a

matrix 𝐀 ∈ ℂ𝑛×𝑛.

DEFINITION 3.19. Consider a nonzero matrix 𝐀𝑑 ∈ ℂ𝑛×𝑛, and let 𝜎max(𝐀𝑑) be the maximal (positive) sin-
gular value of 𝐀𝑑 . If the semi-contractive matrix 𝐀̃𝑑 ∶= (𝜎max(𝐀𝑑))−1𝐀𝑑 is hypocontractive with discrete HC-
index 𝑚𝑑𝐻𝐶 (𝐀̃𝑑) then we define the scaled hypocontractivity index or discrete SHC-index (dSHC-index) 𝑚𝑑𝑆𝐻𝐶 of 𝐀𝑑
as 𝑚𝑑𝑆𝐻𝐶 (𝐀𝑑) ∶= 𝑚𝑑𝐻𝐶 (𝐀̃𝑑).

In analogy to Theorem 3.14 we then have the following characterization when 𝐀̃𝑑 has a finite scaled hypocontrac-
tivity index.

THEOREM 3.20. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be nonzero, and let 𝜎max(𝐀𝑑) be the maximal (positive) singular value of 𝐀𝑑 . If
𝐀𝑑 has a finite discrete SHC-index 𝑚𝑑𝑆𝐻𝐶 , then

‖𝐀𝑗
𝑑‖2 = (𝜎max(𝐀𝑑))𝑗 for all 𝑗 = 1,… , 𝑚𝑑𝑆𝐻𝐶 , and ‖𝐀𝑚𝑑𝑆𝐻𝐶+1

𝑑 ‖2 < (𝜎max(𝐀𝑑))𝑚𝑑𝑆𝐻𝐶+1 . (3.14)

Proof. We scale 𝐀𝑑 as in (3.13) and compute the discrete HC-index 𝑚𝑑𝐻𝐶 (𝐀̃𝑑) (≥ 1) of the semi-contractive
matrix 𝐀̃𝑑 = (𝜎max(𝐀𝑑))−1𝐀𝑑 so that 𝑚𝑑𝑆𝐻𝐶 (𝐀𝑑) ∶= 𝑚𝑑𝐻𝐶 (𝐀̃𝑑). Using the scaling (3.13) yields

‖𝐀𝑗
𝑑‖2 =

‖

‖

‖

(

𝜎max(𝐀𝑑)𝐀̃𝑑
)𝑗
‖

‖

‖2
=
(

𝜎max(𝐀𝑑)
)𝑗
‖𝐀̃𝑗

𝑑‖2 for all 𝑗 ∈ ℕ. (3.15)

If the semi-contractive matrix 𝐀̃𝑑 has a (finite) discrete HC-index 𝑚𝑑𝐻𝐶 (𝐀̃𝑑) (or equivalently the discrete SHC-
index 𝑚𝑑𝑆𝐻𝐶 (𝐀𝑑) of 𝐀𝑑 is finite) then (3.14) follows from Theorem 3.14.

We summarize the analogy between discrete-time and continuous-time systems in Table 3.1.

In this section we have given characterizations for the concepts of stability, semi-contractivity, and hypocontrac-
tivity for linear discrete-time systems. In the next section we relate the continuous-time and discrete-time concepts.

4. Transformation between discrete-time and continuous-time systems. We have seen the close analogy be-
tween the results for the continuous-time and discrete-time case. In this section we recall that the typical bilinear
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transformations between continuous-time and discrete-time systems such as the Cayley transformation (in fact of −𝐀𝑐)
relate hypocoercive with hypocontractive systems (see e.g. [13]), and semi-dissipative with semi-contractive systems
(see e.g. [27]). Moreover, we show that the Cayley transformation (of −𝐀𝑐) directly relates the hypocoercivity and
hypocontractivity indices.

LEMMA 4.1. Let 𝐀𝑐 ∈ ℂ𝑛×𝑛 be a matrix such that (1.1) is (Lyapunov) stable. Then, the Cayley transform

𝐀𝑑 ∶= (𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1 (4.1)

is well-defined and the following properties hold:

(i) If 𝐀𝑐 is negative hypocoercive then 𝐀𝑑 is hypocontractive.
(ii) If 𝐀𝑐 is semi-dissipative then 𝐀𝑑 is semi-contractive. Let 𝐀𝐻 ∶= 1

2 (𝐀𝑐 + 𝐀𝖧
𝑐 ), then the matrix (𝐈 − 𝐀𝑐) is a

bijection from ker(𝐀𝐻 ) to ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑). Consequently, dim ker(𝐀𝐻 ) = dim ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).

Proof. If the continuous-time system (1.1) with system matrix 𝐀𝑐 is (Lyapunov) stable then all eigenvalues of 𝐀𝑐
have non-positive real part and the eigenvalues on the imaginary axis are semi-simple. Hence, the matrices (𝐈 − 𝐀𝑐),
(𝐈 − 𝐀𝖧

𝑐 ) are invertible; and the Cayley transform 𝐀𝑑 = (𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1 is well-defined.

(i) If 𝐀𝑐 ∈ ℂ𝑛×𝑛 is negative hypocoercive, then all eigenvalues of 𝐀𝑑 have absolute value less than one, hence, 𝐀𝑑
is hypocontractive.

(ii) If 𝐀𝑐 ∈ ℂ𝑛×𝑛 is semi-dissipative, then 𝐈−𝐀𝑐 is positive dissipative (hence 𝐈−𝐀𝑐 is invertible). It follows that

𝐈 − 𝐀𝖧
𝑑𝐀𝑑 = 𝐈 − (𝐈 − 𝐀𝑐)−𝖧(𝐈 + 𝐀𝑐)𝖧(𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1

= (𝐈 − 𝐀𝑐)−𝖧
(

(𝐈 − 𝐀𝑐)𝖧(𝐈 − 𝐀𝑐) − (𝐈 + 𝐀𝑐)𝖧(𝐈 + 𝐀𝑐)
)

(𝐈 − 𝐀𝑐)−1

= −2(𝐈 − 𝐀𝑐)−𝖧(𝐀𝖧
𝑐 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1

= −4(𝐈 − 𝐀𝑐)−𝖧𝐀𝐻 (𝐈 − 𝐀𝑐)−1 .

(4.2)

Hence, the matrices −𝐀𝐻 and (𝐈 − 𝐀𝖧
𝑑𝐀𝑑) are related via a congruence transformation. Therefore, 𝐀𝑑 is semi-

contractive (or equivalently, (𝐈 − 𝐀𝖧
𝑑𝐀𝑑) is positive semi-definite) if 𝐀𝑐 is semi-dissipative.

Due to (4.2), if 𝑣 ∈ ker(𝐀𝐻 ) then (𝐈 − 𝐀𝑐)𝑣 ∈ ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑). Thus, (𝐈 − 𝐀𝑐) ker(𝐀𝐻 ) ⊆ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).
Conversely, if 𝑤 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) then (𝐈 − 𝐀𝑐)−1𝑤 ∈ ker(𝐀𝐻 ). Thus, (𝐈 − 𝐀𝑐)−1 ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑) ⊆ ker(𝐀𝐻 ).

Altogether, (𝐈 − 𝐀𝑐) is a bijection from ker(𝐀𝐻 ) to ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑), and dim ker(𝐀𝐻 ) = dim ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).

REMARK 4.2. As a consequence of Lemma 4.1(ii) we have that rank(𝐀𝐻 ) = rank(𝐈−𝐀𝖧
𝑑𝐀𝑑) =∶ 𝑑(𝐀𝑑), the defect

index of 𝐀𝑑 , see Remark 3.9. As a follow-up consequence (using also Theorem 4.5 below) we find that the lower bound
on the hypocontractivity index of 𝐀𝑑 from [11], i.e. 𝑚𝑑𝐻𝐶 (𝐀𝑑) ≥

𝑛−𝑑(𝐀𝑑 )
𝑑(𝐀𝑑 )

equals our lower bound on the hypocoercivity

index of 𝐀𝑐 , i.e. 𝑚𝐻𝐶 (𝐀𝑐) ≥
𝑛−rank(𝐀𝐻 )
rank(𝐀𝐻 ) .

The inverse Cayley transform leads to a similar result for the mapping from the discrete-time to the continuous-time
problem:

LEMMA 4.3. Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be such that 𝑥𝑘+1 = 𝐀𝑑𝑥𝑘, 𝑘 ∈ ℕ0 is stable and that −1 is not an eigenvalue of 𝐀𝑑 .
Then, the inverse Cayley transform

𝐀𝑐 ∶= (𝐀𝑑 − 𝐈)(𝐀𝑑 + 𝐈)−1 (4.3)

is well-defined and the following properties hold.
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(i) If 𝐀𝑑 is hypocontractive then 𝐀𝑐 is negative hypocoercive.
(ii) If 𝐀𝑑 is semi-contractive then 𝐀𝑐 is semi-dissipative. Moreover, with 𝐀𝐻 = 1

2 (𝐀𝑐 +𝐀𝖧
𝑐 ), the matrix (𝐀𝑑 + 𝐈)

is a bijection from ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑) to ker(𝐀𝐻 ) and dim ker(𝐀𝐻 ) = dim ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).

Proof. Since −1 is not an eigenvalue of 𝐀𝑑 then the matrices (𝐀𝑑 + 𝐈), (𝐀𝑑 + 𝐈)𝖧 are invertible; and the inverse
Cayley transform (4.3) is well-defined.

(i) If 𝐀𝑑 is hypocontractive then all eigenvalues of 𝐀𝑑 have modulus less than one, hence, all eigenvalues of 𝐀𝑐
have negative real part. Thus, 𝐀𝑐 is negative hypocoercive.

(ii) If 𝐀𝑑 ∈ ℂ𝑛×𝑛 is semi-contractive then 𝑥𝑘+1 = 𝐀𝑑𝑥𝑘, 𝑘 ∈ ℕ0 is stable (due to Proposition 3.5). Then

𝐀𝐻 = 1
2 (𝐀𝑐 + 𝐀𝖧

𝑐 )

= 1
2

(

(𝐀𝑑 − 𝐈)(𝐀𝑑 + 𝐈)−1 + (𝐀𝑑 + 𝐈)−𝖧(𝐀𝑑 − 𝐈)𝖧
)

= 1
2 (𝐀𝑑 + 𝐈)−𝖧

(

(𝐀𝑑 + 𝐈)𝖧(𝐀𝑑 − 𝐈) + (𝐀𝑑 − 𝐈)𝖧(𝐀𝑑 + 𝐈)
)

(𝐀𝑑 + 𝐈)−1

= −(𝐀𝑑 + 𝐈)−𝖧(𝐈 − 𝐀𝖧
𝑑𝐀𝑑)(𝐀𝑑 + 𝐈)−1 .

(4.4)

Thus, the matrices −𝐀𝐻 and (𝐈−𝐀𝖧
𝑑𝐀𝑑) are related via a congruence transformation, and hence 𝐀𝑑 is semi-contractive

(or equivalently, (𝐈 − 𝐀𝖧
𝑑𝐀𝑑) is positive semi-definite) if 𝐀𝑐 is semi-dissipative.

Due to (4.4), if 𝑣 ∈ ker(𝐀𝐻 ) then (𝐀𝑑 + 𝐈)−1𝑣 ∈ ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑). Thus, (𝐀𝑑 + 𝐈)−1 ker(𝐀𝐻 ) ⊆ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).
Conversely, if 𝑤 ∈ ker(𝐈−𝐀𝖧

𝑑𝐀𝑑) then (𝐀𝑑 + 𝐈)𝑤 ∈ ker(𝐀𝐻 ). Thus, (𝐀𝑑 + 𝐈) ker(𝐈−𝐀𝖧
𝑑𝐀𝑑) ⊆ ker(𝐀𝐻 ). Altogether,

(𝐀𝑑 + 𝐈) is a bijection from ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑) to ker(𝐀𝐻 ) which implies that dim ker(𝐀𝐻 ) = dim ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑).

REMARK 4.4. The assumption in Lemma 4.3 that −1 is not an eigenvalue of 𝐀𝑑 can be relaxed by considering
𝐀𝑐 = (𝐀𝑑 − 𝛼𝐈)(𝐀𝑑 + 𝛼𝐈)−1, where −𝛼 ∈ ℂ (with |𝛼| = 1) is not an eigenvalue of 𝐀𝑑 . Such an 𝛼 clearly exists in
the complex case, but this will not work in the real case if both 1 and −1 are eigenvalues of 𝐀𝑑 and one wants to stay
within the class of real matrices.

The Cayley transformation also gives a direct relation between the hypocoercivity and hypocontractivity indices.

THEOREM 4.5.

(i) Let 𝐀𝑐 ∈ ℂ𝑛×𝑛 be semi-dissipative and negative hypocoercive and let 𝐀𝑑 ∶= (𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1. Then
the hypocoercivity index 𝑚𝐻𝐶 ∈ ℕ0 of 𝐀𝑐 and the hypocontractivity index 𝑚𝑑𝐻𝐶 of 𝐀𝑑 are the same, i.e.,
𝑚𝑑𝐻𝐶 (𝐀𝑑) = 𝑚𝐻𝐶 (𝐀𝑐).

(ii) Let 𝐀𝑑 ∈ ℂ𝑛×𝑛 be semi-contractive and hypocontractive and let 𝐀𝑐 ∶= (𝐀𝑑 − 𝐈)(𝐀𝑑 + 𝐈)−1. Then the
hypocontractivity index 𝑚𝑑𝐻𝐶 ∈ ℕ0 of 𝐀𝑑 and the hypocoercivity index 𝑚𝐻𝐶 of 𝐀𝑐 are the same, i.e.,
𝑚𝐻𝐶 (𝐀𝑐) = 𝑚𝑑𝐻𝐶 (𝐀𝑑).

Proof. (i) Due to the assumptions and Lemma 4.1, 𝐀𝑑 = 2(𝐈−𝐀𝑐)−1 − 𝐈 is semi-contractive and hypocontractive.
Thus, by Lemma 4.3, the inverse Cayley transform (𝐀𝑑−𝐈)(𝐀𝑑+𝐈)−1 is well-defined and satisfies (𝐀𝑑−𝐈)(𝐀𝑑+𝐈)−1 =
𝐈 − 2(𝐀𝑑 + 𝐈)−1 = 𝐀𝑐 .

By assumption, the matrix 𝐀𝑐 = 𝐀𝐻 + 𝐀𝑆 has a finite HC-index 𝑚𝐻𝐶 = 𝑚𝐻𝐶 (𝐀𝑐) which is the smallest integer
such that, due to (2.7),

𝑚𝐻𝐶
⋂

𝑗=0
ker

(

𝐀𝐻𝐀𝑗
𝑐
)

= {0}.
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Hence, there exists a vector 𝑣0 ∈ ℂ𝑛 ⧵ {0} such that

𝐀𝑗
𝑐𝑣0 ∈ ker(𝐀𝐻 ) , 𝑗 ∈ {0,… , 𝑚𝐻𝐶 − 1} and 𝐀𝑚𝐻𝐶

𝑐 𝑣0 ∉ ker(𝐀𝐻 ) . (4.5)

Thus, by Lemma 4.1 (ii), we obtain that

(𝐈 − 𝐀𝑐)𝐀𝑗
𝑐𝑣0 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) , 𝑗 ∈ {0,… , 𝑚𝐻𝐶 − 1}, and (𝐈 − 𝐀𝑐)𝐀
𝑚𝐻𝐶
𝑐 𝑣0 ∉ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) . (4.6)

Conversely, the existence of some 𝑣0 ≠ 0 satisfying the “first part” of (4.6) with some 𝑚𝐻𝐶 ≥ 1 implies that the
HC-index of 𝐀𝑐 is at least 𝑚𝐻𝐶 .

The matrix 𝐀𝑑 = (𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1 is hypocontractive with HC-index 𝑚𝑑𝐻𝐶 ∶= 𝑚𝑑𝐻𝐶 (𝐀𝑑) ∈ ℕ0. Due to (3.8)
this is the smallest integer such that

𝑚𝑑𝐻𝐶
⋂

𝑗=0
ker

(

(𝐈 − 𝐀𝖧
𝑑𝐀𝑑)𝐀

𝑗
𝑑
)

= {0}.

Hence, there exists a vector 𝑤0 ∈ ℂ𝑛 ⧵ {0} such that

𝑤0 ∈
𝑚𝑑𝐻𝐶−1
⋂

𝑗=0
ker

(

(𝐈 − 𝐀𝖧
𝑑𝐀𝑑)𝐀

𝑗
𝑑
)

, and 𝑤0 ∉ ker
(

(𝐈 − 𝐀𝖧
𝑑𝐀𝑑)𝐀

𝑚𝑑𝐻𝐶
𝑑

)

, (4.7)

or equivalently, there exists 𝑤0 ∈ ℂ𝑛 ⧵ {0} such that

𝐀𝑗
𝑑𝑤0 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) , 𝑗 ∈ {0,… , 𝑚𝑑𝐻𝐶 − 1} and 𝐀𝑚𝑑𝐻𝐶
𝑑 𝑤0 ∉ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑). (4.8)

Conversely, the existence of some 𝑤0 ≠ 0 satisfying the “first part” of (4.8) with some 𝑚𝑑𝐻𝐶 ≥ 1 implies that the
dHC-index of 𝐀𝑑 is at least 𝑚𝑑𝐻𝐶 .

It remains to show that 𝑚𝐻𝐶 (𝐀𝑐) = 𝑚𝑑𝐻𝐶 (𝐀𝑑): If 𝑚𝐻𝐶 = 0, then 𝐀𝑐 is dissipative such that ker(𝐀𝐻 ) = {0}.
Hence, ker(𝐈−𝐀𝖧

𝑑𝐀𝑑) = {0} due to Lemma 4.1 (ii) and𝐀𝑑 is contractive, i.e.𝑚𝑑𝐻𝐶 = 0. Conversely, if𝑚𝑑𝐻𝐶 (𝐀𝑑) = 0
then ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) = {0}. Hence, ker(𝐀𝐻 ) = {0} by Lemma 4.1 (ii) and thus 𝐀𝑐 is dissipative and 𝑚𝐻𝐶 = 0.

If 𝑚𝐻𝐶 ≥ 1, then let 𝑣0 ∈ ℂ𝑛 ⧵ {0} satisfy (4.6) with 𝑚𝐻𝐶 = 𝑚𝐻𝐶 (𝐀𝑐). Hence,

𝑞(𝐀𝑐)(𝐈 − 𝐀𝑐)𝑣0 ∈ ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑)

for all polynomials 𝑞 of order up to 𝑚𝐻𝐶 − 1. In particular

𝑤0 ∶= (𝐈 − 𝐀𝑐)𝑚𝐻𝐶𝑣0 ∈ ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑),

and 𝑤0 ≠ 0 since (𝐈 − 𝐀𝑐) is regular. Also, using (4.1) we find that

𝐀𝑗
𝑑𝑤0 = (𝐈 + 𝐀𝑐)𝑗(𝐈 − 𝐀𝑐)𝑚𝐻𝐶−𝑗𝑣0 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) , 𝑗 ∈ {0,… , 𝑚𝑑𝐻𝐶 − 1} .

Hence, (4.8) implies 𝑚𝑑𝐻𝐶 (𝐀𝑑) ≥ 𝑚𝐻𝐶 (𝐀𝑐).

Conversely, if 𝑚𝑑𝐻𝐶 ≥ 1, then let 𝑤0 ∈ ℂ𝑛 ⧵ {0} satisfy (4.8) with 𝑚𝑑𝐻𝐶 = 𝑚𝑑𝐻𝐶 (𝐀𝑑). Hence,

𝑞(𝐀𝑑)𝑤0 ∈ ker(𝐈 − 𝐀𝖧
𝑑𝐀𝑑)
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for all polynomials 𝑞 of order up to 𝑚𝑑𝐻𝐶 − 1. We define 𝑣0 ∶= (𝐀𝑑 + 𝐈)𝑚𝑑𝐻𝐶𝑤0 ≠ 0 since (𝐀𝑑 + 𝐈) is regular. Using
(4.3) and 𝐈 − 𝐀𝑐 = 2(𝐀𝑑 + 𝐈)−1 we compute

𝐀𝑗
𝑐(𝐈 − 𝐀𝑐)𝑣0 = 2(𝐀𝑑 − 𝐈)𝑗(𝐀𝑑 + 𝐈)𝑚𝑑𝐻𝐶−𝑗−1𝑤0 ∈ ker(𝐈 − 𝐀𝖧

𝑑𝐀𝑑) , 𝑗 ∈ {0,… , 𝑚𝑑𝐻𝐶 − 1} .

Hence, (4.6) implies 𝑚𝐻𝐶 (𝐀𝑐) ≥ 𝑚𝑑𝐻𝐶 (𝐀𝑑). Altogether, we deduce that 𝑚𝑑𝐻𝐶 (𝐀𝑑) = 𝑚𝐻𝐶 (𝐀𝑐), which finishes the
proof of statement (i).

(ii) The proof is analogous to that of (i).

REMARK 4.6. It was pointed out to the authors that the results presented in Lemmas 4.1 and 4.3 as well as
Theorem 4.5 can be proved in an alternative way by using the characterization via unobservability subspaces, see
Remark 3.11. The results then can be proved via Lemmas 12.3.10 and 12.2.6 of [25].

EXAMPLE 4.7. Consider the continuous-time system (1.1) with the coefficient matrix

𝐀𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 0 0
1 0 −1 0
0 1 −1 0
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

(4.9)

which is semi-dissipative and 𝐁 = −𝐀𝑐 has hypocoercivity index 𝑚𝐻𝐶 = 2. Applying the Cayley transformation gives

𝐀𝑑 = (𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1 =
1
5

⎡

⎢

⎢

⎢

⎢

⎣

1 −4 2 0
4 −1 −2 0
2 2 −1 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(4.10)

which is semi-contractive and has hypocontractivity index 𝑚𝑑𝐻𝐶 = 2.

Unfortunately, the Cayley transform does not relate the shifted hypocoercivity index𝑚𝑆𝐻𝐶 and the scaled hypocon-
tractivity index 𝑚𝑑𝑆𝐻𝐶 in the same way, as the following example illustrates.

EXAMPLE 4.8. Consider the matrix

𝐀̃𝑑 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1
0 0 0

⎤

⎥

⎥

⎦

which is hypocontractive with hypocontractivity index 𝑚𝑑𝐻𝐶 = 2. The matrix 𝐀𝑑 ∶= 2𝐀̃𝑑 is not semi-contractive,
since 𝐀𝖧

𝑑𝐀𝑑 = diag(0, 4, 4), but it has scaled hypocontractivity index 𝑚𝑑𝑆𝐻𝐶 = 2. For the inverse Cayley transform
of 𝐀𝑑 we obtain

𝐀𝑐 ∶= (𝐀𝑑 − 𝐈)(𝐀𝑑 + 𝐈)−1 =
⎡

⎢

⎢

⎣

−1 4 −8
0 −1 4
0 0 −1

⎤

⎥

⎥

⎦

, 𝐀𝐻 =
⎡

⎢

⎢

⎣

−1 2 −4
2 −1 2
−4 2 −1

⎤

⎥

⎥

⎦

.

The eigenvalues of 𝐀𝐻 are 𝜆 = 3, 𝜆± = −3 ±
√

12 and hence they are simple and the shifted HC-index of 𝐀𝑐 is
𝑚𝑆𝐻𝐶 = 1. This example shows that 2 = 𝑚𝑑𝑆𝐻𝐶 (𝐀𝑑) ≠ 𝑚𝑆𝐻𝐶 (𝐀𝑐) = 1.

It is well-known, see e.g. [17, page 180], that the Cayley transformation also directly relates the stabilizing solutions
of the discrete-time and continuous-time Lyapunov equation. We summarize these results in the following Lemma.
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continuous-time discrete-time,

d
d𝑡𝑥 = 𝐀𝑐𝑥 for 𝑡 ≥ 0 𝑥𝑘+1 = 𝐀𝑑𝑥𝑘 for 𝑘 ∈ ℕ0,
(asymptotically) stable (asymptotically) stable,
semi-dissipative semi-contractive,
(hypo)coercive (hypo)contractive,
𝑚𝐻𝐶 (𝐀𝑐) 𝑚𝑑𝐻𝐶 (𝐀𝑑),
Lyapunov solution 𝐏𝑐 Lyapunov solution 𝐏𝑑 .

TABLE 4.1
Invariance of properties of continuous-time and discrete-time systems under Cayley transformation 𝐀𝑑 = (𝐈 + 𝐀𝑐 )(𝐈 − 𝐀𝑐 )−1 and inverse

Cayley transformation 𝐀𝑐 = (𝐀𝑑 − 𝐈)(𝐀𝑑 + 𝐈)−1

LEMMA 4.9. Let 𝐀𝑐 ∈ ℂ𝑛×𝑛 be a matrix such that (1.1) is (Lyapunov) stable and let 𝐀𝑑 = (𝐈 + 𝐀𝑐)(𝐈 − 𝐀𝑐)−1.
Then 𝐏 is the positive definite solution 𝐏𝑐 = 𝐏 of the continuous-time Lyapunov equation

𝐀𝖧
𝑐 𝐏𝑐 + 𝐏𝑐𝐀𝑐 = −𝐐𝑐 ,

for some positive semidefinite matrix 𝐐𝑐 if and only if 𝐏 is the positive definite solution 𝐏𝑑 = 𝐏 of the discrete-time
Lyapunov equation

𝐀𝖧
𝑑𝐏𝑑𝐀𝑑 − 𝐏𝑑 = −𝐐𝑑

for positive semidefinite 𝐐𝑑 , where the right hand sides are related via 𝐐𝑑 = 2(𝐈 − 𝐀𝖧
𝑐 )

−1𝐐𝑐(𝐈 − 𝐀𝑐)−1.

In summary, we have an almost complete analogy between the properties of continuous-time and discrete-time
systems. We summarize these invariance properties under the Cayley transformation and the inverse Cayley transfor-
mation (if it exists) in Table 4.1.

Finally we consider the scaled Cayley transform

𝐀𝑑(𝑡) ∶= (𝐈 + 𝑡
2
𝐀𝑐)(𝐈 −

𝑡
2
𝐀𝑐)−1 for 𝑡 > 0 , (4.11)

which can be considered as a short-time approximation of the matrix exponential for (1.1). Due to the scaling invariance
of the hypocoercivity (index) of a matrix 𝐀𝑐 ∈ ℂ𝑛×𝑛 (see §2.1), we readily obtain:

COROLLARY 4.10. Let 𝐀𝑐 ∈ ℂ𝑛×𝑛 be semi-dissipative and negative hypocoercive. Then, for all 𝑡 > 0, the scaled
Cayley transform𝐀𝑑(𝑡) is hypocontractive (due to Lemma 4.1 (i)), its dHC-index satisfies𝑚𝑑𝐻𝐶 (𝐀𝑑(𝑡)) = 𝑚𝐻𝐶 (𝐀𝑐) =∶
𝑚𝑑𝐻𝐶 (due to Theorem 4.5 (i)), and the norm of its powers satisfy

‖𝐀𝑑(𝑡)𝑗‖2 = 1 for all 𝑗 = 1,… , 𝑚𝑑𝐻𝐶 , and ‖𝐀𝑑(𝑡)𝑚𝑑𝐻𝐶+1
‖2 < 1

(due to Theorem 3.14).

Conclusions. In this paper we have given a systematic analysis of different concepts related to the stability and
short-time behavior of solutions to linear constant coefficient continuous-time and discrete-time systems. While many
results for the continuous-time setting were already established in [3] we have analyzed under which linear transfor-
mations the properties of asymptotic stability, semi-dissipativity and hypocoercivity stay invariant.
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For linear time-invariant continuous-time systems, it is well-known that the exponential rate of the short-time
behavior of the propagator norm ‖𝑒𝐀𝑐 𝑡

‖ is determined by the logarithmic norm of the system matrix. In this work, we
established that the shifted hypocoercivity index characterizes the (remaining) algebraic decay of the propagator norm
in the short-time regime.

For each of the continuous-time results we have derived a corresponding result for the discrete-time case. These
include the relation between (asymptotic) stability, semi-contractivity and hypocontractivity. We have also introduced
the new concept of shifted hypocoercivity and scaled hypocontractivity. We then have analyzed how the properties
relate under the Cayley transformation that relates continuous-time and discrete-time systems. While the role of the
hypocontractivity index (or norm-one index) in the discrete-time setting has been recognized before, the corresponding
concept—the hypocoercivity index—in the continuous-time setting and its role has been established only recently.

Future work will include the extension of the results of [3] for linear continuous-time differential-algebraic systems
to discrete-time descriptor systems.

Appendix A. Staircase forms. In [3] a computationally feasible procedure to check the conditions of Lemma 2.7
in the continuous-time case via a staircase form under unitary congruence transformations of the pair (𝐉,𝐑) = (𝐁𝑆 ,𝐁𝐻 )
has been presented.

LEMMA A.1 (Staircase form for (𝐉,𝐑)). Let 𝐉 ∈ ℂ𝑛×𝑛 be a skew-Hermitian matrix, and 𝐑 ∈ ℂ𝑛×𝑛 be a nonzero
Hermitian matrix. Then there exists a unitary matrix 𝐕 ∈ ℂ𝑛×𝑛, such that 𝐕𝐉𝐕𝖧 and 𝐕𝐑𝐕𝖧 are block tridiagonal
matrices of the form

𝐕 𝐉 𝐕𝖧 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐉1,1 −𝐉𝖧2,1 ⋯ 0 0
𝐉2,1 𝐉2,2 −𝐉𝖧3,2

⋱ ⋱ ⋱ ⋮
𝐉𝑘,𝑘−1 𝐉𝑘,𝑘 −𝐉𝖧𝑘+1,𝑘 ⋮

⋮ ⋱ ⋱ ⋱
𝐉𝑠−2,𝑠−3 𝐉𝑠−2,𝑠−2 −𝐉𝖧𝑠−1,𝑠−2

0 ⋯ 𝐉𝑠−1,𝑠−2 𝐉𝑠−1,𝑠−1 0
0 ⋯ 0 𝐉𝑠𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑛1
𝑛2
⋮

𝑛𝑘
⋮

𝑛𝑠−2
𝑛𝑠−1
𝑛𝑠

𝑛1 𝑛𝑠−2 𝑛𝑠−1 𝑛𝑠

,

𝐕 𝐑 𝐕𝖧 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐑1 0
0 0
⋮ ⋮
⋮ ⋮
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑛1
𝑛2
⋮
⋮
𝑛𝑠

𝑛1 𝑛 − 𝑛1

,

(A.1)

where 𝑛1 ≥ 𝑛2 ≥ ⋯ ≥ 𝑛𝑠−1 > 0, 𝑛𝑠 ≥ 0, and 𝐑1 ∈ ℂ𝑛1,𝑛1 is nonsingular.

If 𝐑 is nonsingular, then 𝑠 = 2 and 𝑛2 = 0. For example, 𝐕 = 𝐈, 𝐉1,1 = 𝐉 and 𝐑1 = 𝐑 is an admissible choice.

If 𝐑 is singular, then 𝑠 ≥ 3 and the matrices 𝐉𝑖,𝑖−1, 𝑖 = 2,… , 𝑠− 1, in the subdiagonal have full row rank and are
of the form

𝐉𝑖,𝑖−1 =
[

Σ𝑖,𝑖−1 0
]

, 𝑖 = 2,… , 𝑠 − 1,
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with nonsingular matrices Σ𝑖,𝑖−1 ∈ ℂ𝑛𝑖,𝑛𝑖 , moreover Σ𝑠−1,𝑠−2 is a real-valued diagonal matrix.

A system (1.1) with an accretive matrix 𝐁 = 𝐁𝑆 + 𝐁𝐻 is hypocoercive if 𝑛𝑠 = 0 and if this is the case then the
hypocoercivity index is 𝑚𝐻𝐶 (𝐁) = 𝑠 − 2.

A similar staircase form can be derived in the discrete-time case. It is based on the polar decomposition 𝐀𝑑 = 𝐔𝐐,
see Proposition 3.15.

LEMMA A.2 (Staircase form for (𝐔,𝐐)). Let 𝐔 ∈ ℂ𝑛×𝑛 be a unitary matrix, and 𝐐 ∈ ℂ𝑛×𝑛 be a nonzero semi-
contractive Hermitian matrix. Then there exists a unitary matrix 𝐕 ∈ ℂ𝑛×𝑛, such that 𝐕𝐐𝐕𝖧 and 𝐕𝐔𝐕𝖧 are block
upper Hessenberg matrices of the form

𝐕 𝐔 𝐕𝖧 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐔1,1 𝐔1,2 ⋯ ⋯ 𝐔1,𝑠−1 0
𝐔2,1 𝐔2,2 𝐔2,3 ⋯ 𝐔2,𝑠−1 0

⋱ ⋱ ⋱ ⋱ ⋮
𝐔𝑠−2,𝑠−3 𝐔𝑠−2,𝑠−2 𝐔𝑠−2,𝑠−1 0

0 ⋯ 0 𝐔𝑠−1,𝑠−2 𝐔𝑠−1,𝑠−1 0
0 ⋯ 0 𝐔𝑠,𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑛1
𝑛2
⋮

𝑛𝑠−2
𝑛𝑠−1
𝑛𝑠

,

𝐕 𝐐 𝐕𝖧 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐐1 0 ⋯ ⋯ 0 0
0 𝐈𝑛2 0 ⋯ ⋮ ⋮
⋮ 0 ⋱ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ 0 𝐈𝑛𝑠−1 0
0 0 ⋯ ⋯ 0 𝐈𝑛𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑛1
𝑛2
⋮

⋮
𝑛𝑠−1
𝑛𝑠

,

(A.2)

where 𝑛1 ≥ 𝑛2 ≥ ⋯ ≥ 𝑛𝑠−1 > 0, 𝑛𝑠 ≥ 0, and 𝐐1 ∈ ℂ𝑛1,𝑛1 is contractive and Hermitian.

If 𝐐 is contractive, then 𝑠 = 2 and 𝑛2 = 0. Then 𝐕 = 𝐈, 𝐔1,1 = 𝐔 and 𝐐1 = 𝐐 is an admissible choice.

If 𝐐 is not contractive, then 𝑠 ≥ 3 and the matrices 𝐔𝑖,𝑖−1, 𝑖 = 2,… , 𝑠 − 1, in the subdiagonal have full row rank
and are of the form

𝐔𝑖,𝑖−1 =
[

Σ𝑖,𝑖−1 0
]

, 𝑖 = 2,… , 𝑠 − 1,

with nonsingular matrices Σ𝑖,𝑖−1 ∈ ℂ𝑛𝑖,𝑛𝑖 , moreover Σ𝑠−1,𝑠−2 is a real-valued diagonal matrix.

Proof. If 𝐐 is contractive, then 𝑛1 = 𝑛 and we have to choose 𝑠 = 2 and 𝑛2 = 0 to fit 𝐔 into the proposed structure
in (A.2).
If 𝐐 is not contractive, then we have the following constructive proof.

Algorithm 1 Staircase algorithm for pair (𝐔,𝐐)
Input: (𝐔,𝐐)

———– Step 0 ———–
1: Perform a (spectral) decomposition of 𝐐 such that

𝐐 = 𝐕1

[

𝐐̃1 0
0 𝐈

]

𝐕𝖧
1 ,

with 𝐕1 ∈ ℂ𝑛×𝑛 unitary, 𝐐̃1 ∈ ℂ𝑛1,𝑛1 contractive and Hermitian.
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2: Set 𝐕 ∶= 𝐕𝖧
1 , 𝐐̃ ∶= 𝐕𝖧

1 𝐐 𝐕1,

𝐔̃ ∶= 𝐕𝖧
1 𝐔 𝐕1 =∶

[

𝐔̃1,1 𝐔̃1,2
𝐔̃2,1 𝐔̃2,2

]

.

———– Step 1 ———–
3: Perform a singular value decomposition (SVD) of 𝐔̃2,1 ∈ ℂ(𝑛−𝑛1)×𝑛1 such that

𝐔̃2,1 = 𝐖2,1

[

Σ̃2,1 0
0 0

]

𝐕𝖧
2,1,

with unitary matrices 𝐖2,1 and 𝐕2,1 as well as a positive definite, diagonal matrix Σ̃2,1 ∈ ℝ𝑛2,𝑛2 .
4: Set 𝐕2 ∶= diag(𝐕𝖧

2,1, 𝐖
𝖧
2,1), 𝐕 ∶= 𝐕2𝐕.

5: Set

𝐔̃ ∶= 𝐕2 𝐔̃ 𝐕𝖧
2 =∶

⎡

⎢

⎢

⎢

⎢

⎣

𝐔̃1,1 𝐔̃1,2 𝐔̃1,3

𝐔̃2,1 𝐔̃2,2 𝐔̃2,3

0 𝐔̃3,2 𝐔̃3,3

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐑̃ ∶= 𝐕2𝐐̃𝐕𝖧
2 =∶

⎡

⎢

⎢

⎣

𝐐̃1 0 0
0 𝐈𝑛2 0
0 0 𝐈

⎤

⎥

⎥

⎦

.

(The lines indicate the partitioning of the block matrices 𝐔̃ and 𝐐̃ in the previous step.)
———– Step 2 ———–

6: 𝑖 ∶= 3
7: while 𝑛𝑖−1 > 0 or 𝐔̃𝑖,𝑖−1 ≠ 0 do
8: Perform an SVD of 𝐔̃𝑖,𝑖−1 such that

𝐔̃𝑖,𝑖−1 = 𝐖𝑖,𝑖−1

[

Σ̃𝑖,𝑖−1 0
0 0

]

𝐕𝖧
𝑖,𝑖−1,

with unitary matrices 𝐖𝑖,𝑖−1 and 𝐕𝑖,𝑖−1 as well as a positive definite, diagonal matrix Σ̃𝑖,𝑖−1 ∈ ℝ𝑛𝑖,𝑛𝑖 .
9: Set 𝐕𝑖 ∶= diag(𝐈𝑛1 ,… , 𝐈𝑛𝑖−2 , 𝐕

𝖧
𝑖,𝑖−1, 𝐖

𝖧
𝑖,𝑖−1), 𝐕 ∶= 𝐕𝑖𝐕.

10: Set

𝐔̃ ∶= 𝐕𝑖 𝐔̃ 𝐕𝖧
𝑖 =∶

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐔̃1,1 𝐔̃1,2 ⋯ ⋯ 𝐔̃1,𝑖+1
𝐔̃2,1 𝐔̃2,2 𝐔̃2,3 ⋮
0 ⋱ ⋱ ⋱
⋮ ⋱ 𝐔̃𝑖,𝑖−1 𝐔̃𝑖,𝑖 𝐔̃𝑖,𝑖+1
0 ⋯ 0 𝐔̃𝑖+1,𝑖 𝐔̃𝑖+1,𝑖+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, where 𝐔̃𝑖,𝑖−1 = [Σ̃𝑖,𝑖−1 0].

11: 𝑖 ∶= 𝑖 + 1
12: end while

———– Step 3 ———–
13: 𝑠 ∶= 𝑖
14: for 𝑖 = 1,… , 𝑠 do
15: for 𝑗 = 𝑖,… , 𝑠 do
16: Set 𝐔𝑖,𝑗 ∶= 𝐔̃𝑖,𝑗 .
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17: end for
18: end for
19: for 𝑖 = 2,… , 𝑠 do
20: Set 𝐔𝑖,𝑖−1 ∶= 𝐔̃𝑖,𝑖−1.
21: end for
Output: Unitary matrix 𝐕.

It is clear that Algorithm 1 terminates after a finite number of steps, either with 𝑛𝑖−1 = 0 or 𝐔𝑖,𝑖−1 = 0. We also
note that Step 3 provides the nonzero entries of the r.h.s. of 𝐕𝐔𝐕𝖧 in (A.2).

Note that Algorithm 1 can be applied to the polar decomposition 𝐏𝑑𝐔𝑑 analogously. In both cases it immediately
follows that 𝐀𝑑 is hypocontractive if 𝑛𝑠 = 0 and the hypocontractivity index is then 𝑚𝑑𝐻𝐶 (𝐀𝑑) = 𝑠 − 2.

Appendix B. Equivalent hypocoercivity conditions.

The following lemma is a simple generalization of Lemma 2.3 in [4] and Proposition 1 in [1].

LEMMA B.1. Let 𝐃 ∈ ℂ𝑛×𝑛 be positive semi-definite and 𝐂 ∈ ℂ𝑛×𝑛. Then the following are equivalent:

(E1) There exists 𝑚 ∈ ℕ0 such that

rank[𝐃,𝐂𝐃,… ,𝐂𝑚𝐃] = 𝑛 . (B.1)

(E2) There exists 𝑚 ∈ ℕ0 such that
𝑚
∑

𝑗=0
𝐂𝑗𝐃(𝐂𝖧)𝑗 > 0 . (B.2)

Moreover, the smallest possible 𝑚 ∈ ℕ0 in (E1) and (E2) coincide.

Proof. First, we show that (E1) is equivalent to:

(E1’) There exists 𝑚 ∈ ℕ0 such that

rank[𝐃1∕2,𝐂𝐃1∕2,… ,𝐂𝑚𝐃1∕2] = 𝑛 ,

with the same 𝑚 as in (E1):
(E1) holds iff the statement

𝑥𝖧[𝐃,𝐂𝐃,… ,𝐂𝑚𝐃] = 0 for some 𝑥 ∈ ℂ𝑛,

i.e. 𝐃(𝐂𝖧)𝑗𝑥 = 0 for 𝑗 = 0,… , 𝑚 implies 𝑥 = 0. Now, since ker(𝐃) = ker(𝐃1∕2), (E1) and (E1’) are equivalent.

Next, let (E1) hold and define

𝐄 ∶= [𝐃1∕2, 𝐂𝐃1∕2, ..., 𝐂𝑚𝐃1∕2] ∈ ℂ𝑛×(𝑚+1)𝑛 .

Then,

ℂ𝑛×𝑛 ∋ 𝐄 𝐄𝖧 =
𝑚
∑

𝑗=0
𝐂𝑗𝐃(𝐂𝖧)𝑗 ≥ 0

has rank 𝑛 and (B.2) follows.
Conversely, let (E2) hold but assume we had rank 𝐄 < 𝑛. Then, ∃ 0 ≠ 𝑥 ∈ ℂ𝑛 with 𝑥𝖧𝐄 = 0. Hence, 𝑥𝖧𝐄 𝐄𝖧 = 0
would contradict (B.2).
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