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Abstract� The relaxation�time �RT� Wigner equation models the quantum�mechanical mo�
tion of electrons in an electrostatic �eld� including their interaction with phonons� We discuss
the conditions on a Wigner distribution function for being 	physical
� and show that they will
stay 	physical
 under temporal evolution� Particular attention is paid to the proper de�nition
of the particle density for Wigner functions w �� L�� For the �D�periodic� self�consistent
RT�Wigner�Poisson equation we give a local convergence result towards the steady state�

�� Introduction� This paper is concerned with the analysis of the relaxation�time Wigner
equation and the physical properties of its solution� The Wigner formalism� which represents
a phase�space description of quantum mechanics� has in recent years attracted considerable
attention of solid state physicists for including quantum e�ects into the simulation of ultra�
integrated semiconductor devices� like resonant tunneling diodes� e�g� ���	� �
�	� ��	
� Also�
the Wigner ��Poisson
 equation has recently been the objective of a detailed mathematical
analysis� For a physical derivation and the discussion of many of its analytical properties
we refer the reader to �
�	� �
�	� ��	 �and references therein
�

The real�valued Wigner �quasi
 distribution function w � w�x� v� t
 describes the state
of an electron ensemble in the �d�dimensional position�velocity �x� v
�phase space� In
the absence of collision and scattering� and in the e�ective�mass approximation� its time
evolution under the action of the �real�valued
 electrostatic potential V �x� t
 is governed by
the Wigner equation� which reads in scaled form�
�
�

 wt � v � rxw ���V 	w � �� x� v � R
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In order to account for electron�electron interactions in a simple mean��eld approximation
�
�

 has to be coupled to the Poisson equation
�
��
 �V �x� t
 � D�x
� n�x� t
�
where D denotes the doping pro�le of the semiconductor� In this kinetic framework the
particle density n is �formally
 de�ned as n �

R
w dv�

The relaxation�time �RT 
 approximation is the simplest model to account for electron�
phonon scattering� but it still yields remarkable results in device simulations� In �
�	 the
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relaxation term 
�� �w��x� v
 � w�x� v� t
	 serves as the right hand side of �
�

� coupled
to �
��
� In the application to semiconductor device simulations � is often modeled as a
positive function of x and v� However� as part of the analysis of x� requires � to be constant�
we will sometimes restrict ourselves to this case� w� is usually chosen as a steady state of
the Wigner�Poisson system� satisfying

�
��
 v � rxw� ���V�	w� � �� �V� � D � n��
and n� is the particle density pertaining to w�� w� describes the state of the phonons in ther�
modynamic equilibrium� It is uniquely determined only when prescribing a thermodynamic
distribution function for the included pure quantum states ��
� 
�	
�

The outline of this paper is as follows� in x� we discuss the two equivalent descriptions
of physical quantum states by means of Wigner functions and density matrices� and then
analyze the properties of the RT�Wigner equation� In x� we will study the one�dimensional�
periodic RT�Wigner�Poisson system� and obtain a local convergence result for large time�

�� Physical Quantum States� Time Evolution�

In this section� we will analyze the time evolution of physically relevant initial states wI

under the RT�Wigner equation for a given electrostatic potential V �x� t
�

���


wt � v � rxw ���V 	w � �

w � w�

�
� t 	 ��

w�x� v� t � �
 � wI�x� v
� x� v � R
d �

To start with� we state an existence and uniqueness result for initial Wigner functions
in L��R�d
� the space which contains the physical quantum states� It is a simple extension
of the analysis for the linear Wigner equation �Th� 
� Lemma � in �
�	
� which is based on
perturbation arguments for C� semigroups �see �
�	
�

Proposition ���� a
 Let wI � w� � L��Rdx �R
d
v 
� V � L��Rd

x �R
�
t 
� and ��x� v
 � �� 	 ��

then ���

 has a unique mild solution w � C�����
�L��Rdx � R
d
v 

� b
 If� additionally�

v � rxw
I � L��R�d
 and V � C������
�L��Rdx 

� then w is the unique classical solution�

If the potential V is constant in time and w� is a steady state Wigner function for the
same potential� then it is seen immediately that w�t
 � w� in L��R�d
 as t���

Due to the de�nition of the pseudo�di�erential operator ��V 	 in terms of Fourier trans�
forms� L��R�d
 is the natural framework to analyze the �RT�
 Wigner equation� In this
setting� however� the following de�nition of the particle density� inspired by analogy with
classical kinetic theory�

����
 n�x� t
 �

Z
Rd

w�x� v� t
dv

is only formal� Also� in contrast to classical phase space distribution functions� Wigner
functions need not be pointwise nonnegative� Therefore� the preservation of nonnegativity
of the physically observable quantity n is not obvious�

In order to analyze the time evolution of physically relevant states� we will have to exploit
the equivalent descriptions of quantum states via density matrices and Wigner functions�
Through this one�to�one equivalence we will also be able to give a meaning to ����
� We
are now going to de�ne quantum states that have a well de�ned and nonnegative particle
density n � L�

��Rdx
� �This exposition will closely follow �
�	 and x� of �
�	�


A physically relevant� mixed quantum state is uniquely described by a positive� self�
adjoint� trace class operator b
 acting on L��Rdx 
� In the sequel we will refer to it as �density
matrix operator�� and thus tacitly assume it to have the previously listed properties� b
 is
Hilbert�Schmidt and can be represented as an integral operator on L��Rdx 
�

�



����
 �b
f
�x
 �

Z
Rd


�x� y
f�y
dy� f � L��Rd
�

Its kernel 
 � L��Rdx � R
d
y 
 satis�es 
�x� y
 � 
�y� x
� x and y being two position variables�


 possesses a diagonal Fourier expansion �convergent in L��R�d

 of the form

����
 
�x� y
 �
X
j�N

�j�j�x
�j�y
�

where f�jgj�N � 
��N
 and the complete o�n�s� f�jgj�N in L��Rd
 are the eigenvalues and
eigenfunctions of b
� respectively� Since b
 is positive and trace class we have �j � �� j � N

and f�jgj�N � 
��N
� Here �j represents the occupation probability of the pure quantum
state �j within the considered mixed state�

We will now turn to the de�nition of the particle density associated with b
 or� equivalently�
its kernel 
�x� y
� In the framework of Schr�odinger wave functions the particle density is
de�ned as
����
 n�x
 �

X
j�N

�j j�j�x
j�

which� under the above assumptions� clearly lies in L�
��Rd
� Because of ����
 the particle

density is therefore formally obtained as 
�x� x
� But as the subspace fx � yg of R�d is
of measure zero� this expression is not immediately meaningful� To clarify the situation
we have to recall that 
 is not simply an L��function� but the kernel of a density matrix
operator� We now introduce the auxiliary function

����
 z�x� �
 � 


�
x �

�

�
� x�

�

�

�
� z � L��R�d
�

which permits the following characterization of the trace class operators under consideration
�see �
�	
�
Lemma ����
Let b
 be a positive� self�adjoint� Hilbert�Schmidt operator on L��Rdx
� Then b
 is trace class
i� z � C��Rd� �L��Rdx

� which then also implies z � C��Rdx �L��Rd� 

�

Since this will be an essential part of the subsequent analysis we will now brie�y illustrate
this result and its proof�

a
 We �rst assume that the considered b
 has a kernel satisfying z � C��Rd� �L��Rdx 

 �

C�R�d
� Then result � on p� 

� of ��	 asserts that b
 is trace class with Trb
 �R
z�x� �
dx� By density this then extends to z � C��Rd� �L��Rdx 

�

b
 For any trace class operator b
 on L��Rdx
 the following embedding result has been
obtained in ��	� z � C��Rd� �L��Rdx 

 with the estimate

����
 kzkL��Rd��L
��Rdx��

	 Trjb
j�
The particle density associated with the density matrix operator b
 is therefore obtai�
ned as the restriction of z to the subspace f� � �g� or equivalently by appropriately
smoothing 
 across its diagonal x � y�

����
 n�x
 � z�x� �
 � lim
���

Z
Rd




�
x �

�

�
� x�

�

�

�
e�j�j

����

����
d��
d� � L�

��Rdx 
�

Clearly� 
�x� y
 could also be smoothed by other sequences of decay function con�
verging to the ��distribution �see ��	
� The trace of the density matrix operator
satis�es

����
 Trb
 �
X
j�N

�j �

Z
Rd

n�x
dx�






In the sequel we will completely identify a density matrix operator b
 and its kernel 
 and
simply call them �density matrix��

We will next introduce the Wigner transform of a density matrix and discuss the pro�
perties it inherits� The Wigner function corresponding to a density matrix b
� in the sequel
referred to as a �physical Wigner function�� is de�ned by

���
�
 w�x� v
 �



���
d

Z
Rd

z�x� �
e�iv��d�� x� v � R
d �

Since b
 is self�adjoint and Hilbert�Schmidt� the Wigner function is real valued and w �
L��Rdx � R

d
v 
� with kwk� � ���
�d��k
k�� The positivity and the �nite trace of b
 can also

be reformulated in terms of w� though in a somewhat more di�cult fashion� As we will not
need them here� we just refer to �
�	� From z � C��Rdx �L��Rd� 

 one immediately deduces

���


 w � C��Rdx �FL��Rdv 

�

Also� since the quantum mechanical phase space is symmetric with respect to the x and
v variables� one can obtain w � C��Rdv �FL��Rdx 

� This regularity of a physical Wigner
function w is in general still not su�cient to justify a de�nition of the particle density as
n �

R
w dv� However� ����
 and ���
�
 show that the particle density of a physical Wigner

function can be calculated through the following regularization� which converges in L��Rdx
�

���
�
 n�x
 � lim
���

Z
Rd

w�x� v
e��jvj
���dv � L�

��Rd
�

For Wigner functions w � L��Rdx � R
d
v 
 this of course coincides with

R
w dv� However�

w�t
 � L��Rdx � R
d
v 
 can typically not be expected when considering the time evolution

�either by �
�

 or ���


 with a non�smooth potential V � The associated di�culty to de�ne
n was also numerically experienced in �
�	� where a deterministic particle method for the
Wigner�Poisson system was studied�

We will now study the time evolution of quantum states under the RT�Wigner equation�
and we will show that initially  physical Wigner function� will stay  physical�� i�e�� correspond
to a positive density matrix operator with �nite trace� For the rest of this section we will
only consider constant relaxation times � 	 � and time�independent potentials V �x
� Also�
we will assume that the Hamiltonian H � � �

�� � V � D�H
 � L��Rd
 be essentially self�

adjoint on C�
� �Rd 
 �for su�cient conditions on V see �
�	� �
�	� e�g�
� Here we only mention

a condition such that the potential is a relatively bounded perturbation of � �
���

���
�
 V � Lp�Rd 
 � L��Rd
� p 	
d

�
and p � ��

and then D�H
 � H��Rd 
�

!From the transformations ����
� ���
�
 one easily sees that the density matrix 
�x� y
�
corresponding to the Wigner function solution of ���

� satis�es the RT�Heisenberg equa�
tion�

���
�

i
t � �Hx �Hy

�

i

�
�
� 
�
� t 	 ��


�x� y� t � �
 � 
I�x� y
� x� y � R
d �

Here� 
� denotes the steady state density matrix corresponding to w�� and the subscripts
x and y indicate that this operator acts� respectively� only on the x and y variable� The
analysis of �
�	 and Proposition ��
 immediately show that� for 
I � 
� � L��Rdx�R

d
y 
� ���
�


has a unique mild solution 
 � C�����
�L��Rdx � R
d
y 

� From ���
�
 we easily conclude


�x� y� t
 � 
�y� x� t
� t � �� Hence� the density matrix will� under temporal evolution�
continue to be self�adjoint and Hilbert�Schmidt�

�



The time evolution of the Wigner equation �without relaxation term
 is equivalent to
countably many Schr�odinger equations for each pure quantum state ��
�	
� Thus� a Wigner
function solution to �
�

 can be expanded in a series of pure state Wigner functions with
constant�in�time occupation probabilities �j �

���
�
 w�t
 �
X
j�N

�jwj�t


Each wj corresponds via

���
�
 wj�x� v� t
 �
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d

Z
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�
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� t

�
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�
x�

�

�
� t

�
e�iv��d��

to a pure state wave function �j � whose time evolution is governed by the Schr�odinger
equation i�t � H�� This equivalence was the basis of the existence and uniqueness analysis
of the Wigner�Poisson problem ���	� ��	
� For the RT�Wigner equation� however� this kind
of equivalence does not hold� even for modi�ed Hamiltonians� Therefore� the analysis of
the whole space RT�Wigner�Poisson equation requires a di�erent approach� and will be
the subject of a subsequent paper� We remark that a di�erent dissipative Wigner equation
model has been discussed in �

	� Since that model is based on a dissipative Hamiltonian�
equivalence to a system of Schr�odinger equations has been preserved�

For the subsequent analysis we now introduce the following notation� S�t
 � exp��iHt

is the unitary C� group on L��Rd 
 generated by the closure of �iH� and T �t
 � exp
���iHx � iHy
t	 is the unitary C� group on L��Rdx�R

d
y 
 generated by the closure of �iHx�

iHy� According to Th� ��
 of �
�	 they are related by T �t
 � Sx�t

 Sy��t
� t � R� where

 denotes the continuous extension of a tensor product of operators� acting on L��Rdx 
 and
L��Rdy 
� respectively� For a function 
 � L��Rdx � R

d
y 
 with diagonal representation ����


this then reads explicitly

���
�
 T �t

 �
X
j�N

�j�Sx�t
�j�x

�Sy��t
�j�y

�

We can now formulate the main result of this section�

Theorem ����

Let wI � w� be physical Wigner functions� Then the mild solution w�t
 of ���

 will be a
physical Wigner function for t 	 ��

Proof� Since w � C�����
�L��Rdx � R
d
v 

 is real valued� we only have to prove that w�t
�

t 	 � corresponds to a positive density matrix operator of trace class�

We denote the diagonal Fourier expansions of the initial and steady state density matrices
by

���
�
 
I�x� y
 �
X
j�N

�j�j�x
�j�y
� 
��x� y
 �
X
j�N

�j�j�x
�j�y
�

By the assumptions on wI � w� we have f�jg� f�jg � 
���N
� and f�jg� f�jg are complete

o�n�s� in L��Rd
� The density matrix corresponding to w satis�es ���
�
� and it can be
explicitly represented by the variation�of�constants formula for inhomogeneous evolution
equations �see �
�	
�

���
�



�x� y� t
 � e�
t
�

X
j�N

�j�Sx�t
�j�x

�Sy�t
�j�y



�



�

Z t

�

e�
t�t�
�

X
j�N

�j�Sx�t� t�
�j�x

�Sy�t� t�
�j�y

dt��

In this form we can easily check that b
�t
 is a positive operator� For any f � L��Rd
 we

�



obtain

�����


ZZ

�x� y� t
f�x
f�y
dx dy � e�

t
�

X
j�N

�j

����
Z

f�x
Sx�t
�j�x
dx

����
�

�



�

Z t

�

e�
t�t�
�

X
j�N

�j

����
Z

f�x
Sx�t� t�
�j�x
dx

�����dt� � ��

As both� fS�t
�jg� fS�t
�jg also form a complete o�n�s� in L��Rd
 for any t � R� we readily
obtain the global estimate

����

 k
�t
k� 	 e�t��k
Ik� � �
� e�t�� 
k
�k�
from ���
�
�

Since we already know that b
�t
 is positive we can calculate its trace in the o�n� basis
fS�t
�kg� e�g� Again using the representation ���
�
� a short calculation gives

�����

X
k�N

ZZ

�x� y� t
�Sx�t
�k�x

�Sy�t
�k�y

dx dy � e�

t
�

X
j�N

�j��
�e�
t
� 

X
j�N

�j �

and thus
�����
 Trb
�t
 � e�t��Trb
I � �
� e�t�� 
Trb
��

This result can easily be extended to time�dependent potentials V whenever they give
rise to a unitary propagator for the corresponding Hamiltonian �see� e�g� Th� X��
 of
�
�	
� The explicit representation of 
 clearly shows that the occupation probabilities of
pure quantum states are time�dependent in the dynamics of the RT�Wigner model�

�� RT�Wigner�Poisson equation 	�D periodic
�
In this section we shall analyze the coupled RT�Wigner�Poisson problem and give a lo�
cal convergence result to the steady state w� for small relaxation times ��x� v
� We will
now study the solution of the following one�dimensional model with periodic boundary
conditions�

���
a
 wt � vwx ���V 	w � �
w � w�

�
� x � ��� ��
� v � R� t 	 ��

���
b
 w��� v� t
 � w���� v� t
� v � R� t 	 ��

���
c
 w�t � �
 � wI �

���
d
 n�x� t
 �

Z
R

w�x� v� t
dv�

���
e
 Vxx � D�x
� n�x� t
� x � ��� ��
� t 	 ��
���
f
 V ��� t
 � V ���� t
 � �� t 	 ��
and the potential is extended ���periodically outside of the interval ��� ��
� which is needed
to de�ne ��V 	� Since the used techniques will be very similar to the analysis of the periodic
Wigner�Poisson equation given in x� of ��	� we will only sketch the proofs here�

In order to avoid the di�culties associated with the de�nition of the density n� as descri�
bed in x�� problem ���

 will be posed in the Hilbert space X �� L����� ��
�R� 
�v� 
� endo�
wed with the norm kukX � kuk� �kvuk�� The continuous embedding X �� L����� ��
�R

then justi�es the de�nition ���
d
�

We de�ne the operator A � D�A
 � X by Au � �vux and the periodic boundary
conditions are incorporated in its domain D�A
 � fu � Xjvux � X�u��� v
 � u���� v
� v �
Rg� A generates a C� group of isometries fS�t
� t � Rg on X� given by S�t
u�x� v
 �
"u�x � vt� v
� where "u denotes the ���periodic extension of u� The nonlinear operator
B � X � X is de�ned by Bu � ��V �u		u� where the potential V �u	 is the solution of the
Poisson equation ���
e
� ���
f
 with periodic extension outside of the interval ��� ��
�

�



For the analysis of ���

 we will need the following result from ��	� Here and in the sequel
C denotes generic� but not necessarily equal constants�
Lemma ���� Let D � L���� ��
� then B is of class C� in X� and it satis�es
����
 kBu� �Bu�kX 	 C�ku�kX � ku�kX � kDkL�������
ku� � u�kX �

Therefore� we can consider Bu� w��u
�

as a locally Lipschitz perturbation of the generator
A� which is the basis of the following global existence result�
Theorem ���� Let D � L���� ��
� w� � X� and ��x� v
 � �� 	 ��

a
 For every wI � X� �	�
� admits a unique mild solution w � C�����
� X
�
b
 If wI � D�A
� then w is a classical solution with w � C������
� X
� w�t
 � D�A


for t � ��

Proof� The local�in�time result is obtained as an application of x� in �
�	�
To obtain a global�in�time solution we will derive an a�priori estimate for kw�t
kX �

which requires the regularity of classical solutions� This estimate then carries over to the
mild solution by a simple density argument� Since the analysis of x� does not immediately
carry over to the space periodic case� an L��estimate of type ����

 has to be established
again� Multiplying ���
a
 by w and integrating gives �since � is skew symmetric
�

����




�

d

dt
kwk�� �

Z ��

�

Z
R

w
w� �w

�
dv dx 	




��
kwk�kw�k��

and thus

����
 kw�t
k� 	 kwIk� � kw�k�
t

��
�

A uniform bound for kw�t
k�� analogous to ����

� can be obtained if ��x� v
 is bounded�
For the a�priori estimate on kvw�t
k� we now consider the evolution equation for u � vw�

����
 ut �Au���V �t
	u � �#�Vx�t
	w�t
 �
vw� � u

�
�

with the pseudo�di�erential operator

����
 #�V �t
	 �



�

�
V

�
x �




�i
�v � t

�
� V

�
x�




�i
�v� t

��
�

#�V �t
	 is a bounded operator in L����� ��
 � R
 with k#�V �t
	k� 	 kV �t
kL�������� Mul�
tiplying ����
 by u and integrating gives

����




�

d

dt
ku�t
k�� �

Z ��

�

Z
R

u

�
�#�Vx�t
	w�t
 �

vw� � u

�

�
dv dx�

and hence

����

d

dt
kw�t
kX 	 kVx�t
kL�������kw�t
k� �




��
kw�kX �

We now use ����
 and the estimate
����
 kVx�u	kL������� 	 C�kukX � kDkL�������
�
which follows from the Poisson equation with periodic boundary conditions� Applying
Gronwall�s inequality then shows that the solution w exists globally in time�

Using estimation techniques similar to those for the above existence and uniqueness result
we shall now give a local convergence result towards the steady state w�� We remark that
steady states of the Wigner�Poisson system are not unique� and w� has to be chosen as
part of the RT�model�
Theorem ���� Let D � L���� ��
� wI � w� � X� and �� � ��x� v
 � �� 	 �� where w� is a
steady state of ���

� i�e��
���
�
 Aw� � Bw� � ��

�



Then w�t

t��
���� w� in X for kwI � w�kX and �� su�ciently small�

Proof� Like in the proof of Theorem ��� a
 we will �rst establish the convergence for
classical solutions� and w� � D�A
� The result then extends to mild solutions by a density
argument�

We now consider the time evolution of y � w � w�� Due to ���
�
� it satis�es�

���
�
 yt � Ay � �Bw �Bw�
�
y

�
�

Proceeding as before gives the estimate

���



d

dt
ky�t
k� 	 kBw�t
 �Bw�k� �




��
ky�t
k��

With the analogous estimate for vy�t
 we �nally get by using ����


���
�


d

dt
ky�t
kX 	 kBw�t
�Bw�kX �




��
ky�t
kX

	

�
C�ky�t
kX � �kw�kX � kDkL�������
�




��

�
ky�t
kX �

The asserted convergence now follows if

���
�
 C�kwI � w�kX � �kw�kX � kDkL�������
 �



��
�

with C independent of wI � w��
The convergence behavior of the RT�Wigner�Poisson system for large � is currently

under investigation and will be discussed in a subsequent paper�
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