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ABSTRACT. The relaxation-time (RT) Wigner equation models the quantum-mechanical mo-
tion of electrons in an electrostatic field, including their interaction with phonons. We discuss
the conditions on a Wigner distribution function for being ‘physical’, and show that they will
stay ‘physical’ under temporal evolution. Particular attention is paid to the proper definition
of the particle density for Wigner functions w ¢ L'. For the 1D-periodic, self-consistent
RT-Wigner—Poisson equation we give a local convergence result towards the steady state.

1. Introduction. This paper is concerned with the analysis of the relaxation—time Wigner
equation and the physical properties of its solution. The Wigner formalism, which represents
a phase—space description of quantum mechanics, has in recent years attracted considerable
attention of solid state physicists for including quantum effects into the simulation of ultra—
integrated semiconductor devices, like resonant tunneling diodes, e.g. ([7], [10], [5]). Also,
the Wigner (-Poisson) equation has recently been the objective of a detailed mathematical
analysis. For a physical derivation and the discussion of many of its analytical properties
we refer the reader to [15], [12], [6] (and references therein).

The real-valued Wigner (quasi) distribution function w = w(z,v,t) describes the state
of an electron ensemble in the 2d-dimensional position—velocity (z,v)-phase space. In
the absence of collision and scattering, and in the effective-mass approximation, its time
evolution under the action of the (real-valued) electrostatic potential V' (x,t) is governed by
the Wigner equation, which reads in scaled form:

(1.1) w4+ v-Vew—OV]w=0, zveR), d=1,20r3,
with the pseudo-differential operator

1 ] : /
OV]w =16V |z, =Vt |w = L/ 5V (z,n, t)w(z, v, t)e’ ™)y dn,
2 (27T)d Rd Rd,

(1.2)
oV (z,1,t) = V<x+ ﬁ,t) - V(x _ Q,t).

2 2

In order to account for electron-electron interactions in a simple mean-field approximation
(1.1) has to be coupled to the Poisson equation
(1.3) AV (z,t) = D(x) — n(x,t),
where D denotes the doping profile of the semiconductor. In this kinetic framework the
particle density n is (formally) defined as n = [ w dv.

The relaxation—time (RT') approximation is the simplest model to account for electron—
phonon scattering, but it still yields remarkable results in device simulations. In [10] the
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relaxation term 1/7 [wq(x,v) — w(z,v,t)] serves as the right hand side of (1.1), coupled
to (1.3). In the application to semiconductor device simulations 7 is often modeled as a
positive function of z and v. However, as part of the analysis of §2 requires 7 to be constant,
we will sometimes restrict ourselves to this case. wy is usually chosen as a steady state of
the Wigner—Poisson system, satisfying

(14:) (O Vmwo - @[Vo]’wo == 0, AVO =D — o,

and ny is the particle density pertaining to wg. wq describes the state of the phonons in ther-
modynamic equilibrium. It is uniquely determined only when prescribing a thermodynamic
distribution function for the included pure quantum states ([1, 16]).

The outline of this paper is as follows: in §2 we discuss the two equivalent descriptions
of physical quantum states by means of Wigner functions and density matrices, and then
analyze the properties of the RT-Wigner equation. In §3 we will study the one-dimensional,
periodic RT-Wigner—Poisson system, and obtain a local convergence result for large time.

2. Physical Quantum States: Time Evolution.
In this section, we will analyze the time evolution of physically relevant initial states w

under the RT-Wigner equation for a given electrostatic potential V' (x,):

wt+v-wa—®[V]w:—w_w0, t >0,
T

I

(2.1)
w(z,v,t =0) =w!(x,v), z,veR.

To start with, we state an existence and uniqueness result for initial Wigner functions
in L2(R??), the space which contains the physical quantum states. It is a simple extension
of the analysis for the linear Wigner equation (Th. 1, Lemma 5 in [14]), which is based on
perturbation arguments for Cjy semigroups (see [18]).

Proposition 2.1. a) Let w!, wy € L2(RE x R?), V € L>®(R? x RY), and 7(x,v) > 79 > 0,
then (2.1) has a unique mild solution w € C([0,00); L2(RZ x R%)). b) If, additionally,
v Vew! € L2(R??) and V € C1([0,00); L= (RY)), then w is the unique classical solution.

If the potential V is constant in time and wy is a steady state Wigner function for the
same potential, then it is seen immediately that w(t) — wg in L?(R??) as t — oco.

Due to the definition of the pseudo-differential operator ©[V] in terms of Fourier trans-
forms, L?(R??) is the natural framework to analyze the (RT-) Wigner equation. In this
setting, however, the following definition of the particle density, inspired by analogy with
classical kinetic theory,

(2.2) n(z,t) = /Rdw(ac,v,t)dv

is only formal. Also, in contrast to classical phase space distribution functions, Wigner
functions need not be pointwise nonnegative. Therefore, the preservation of nonnegativity
of the physically observable quantity n is not obvious.

In order to analyze the time evolution of physically relevant states, we will have to exploit
the equivalent descriptions of quantum states via density matrices and Wigner functions.
Through this one-to-one equivalence we will also be able to give a meaning to (2.2). We
are now going to define quantum states that have a well defined and nonnegative particle
density n € L% (R?). (This exposition will closely follow [13] and §2 of [12].)

A physically relevant, mixed quantum state is uniquely described by a positive, self—
adjoint, trace class operator p acting on L2(R?). In the sequel we will refer to it as ’density
matrix operator’, and thus tacitly assume it to have the previously listed properties. p is
Hilbert-Schmidt and can be represented as an integral operator on L2(RZ):
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@3 @N@ = [ elensed. ferE)

Its kernel p € L2(R4 x R‘yi) satisfies p(x,y) = p(y,x),  and y being two position variables.
p possesses a diagonal Fourier expansion (convergent in L2(R??)) of the form
(2.4) p(z,y) = ZAJ@bJ(x)zpj(y)a

JEN
where {\;}jen € 2(N) and the complete o.n.s. {1/, };en in L?(R?) are the eigenvalues and
eigenfunctions of p, respectively. Since p is positive and trace class we have A; > 0, j € N
and {\;}jen € £*(N). Here )\, represents the occupation probability of the pure quantum
state 1; within the considered mixed state.

We will now turn to the definition of the particle density associated with p or, equivalently,
its kernel p(z,y). In the framework of Schrédinger wave functions the particle density is
defined as
@5  n@) = 3 Al (@)

JEN
which, under the above assumptions, clearly lies in L% (R?). Because of (2.4) the particle
density is therefore formally obtained as p(x,z). But as the subspace {z = y} of R?? is
of measure zero, this expression is not immediately meaningful. To clarify the situation
we have to recall that p is not simply an L2-function, but the kernel of a density matrix
operator. We now introduce the auxiliary function

26)  sten)=p(o+Da-1). ze 2@
which permits the following characterization of the trace class operators under consideration

(see [12]).
Lemma 2.2.
Let p be a positive, self-adjoint, Hilbert-Schmidt operator on L2(R2). Then p is trace class
iff z € Co(RE; LY (RY)), which then also implies z € Co(RY; L' (RY)).

Since this will be an essential part of the subsequent analysis we will now briefly illustrate
this result and its proof:

a) We first assume that the considered p has a kernel satisfying z € Co(R%; L (R%)) N
C(R2?). Then result 2 on p. 114 of [8] asserts that p is trace class with Trp =
[ #(x,0)dx. By density this then extends to z € Co(R%; L' (RY)).
b) For any trace class operator p on L2(R?) the following embedding result has been
obtained in [3]: z € Co(R¢; L (R%)) with the estimate
(2.7) 12| oo (Ra; L1 (Re)) < T[]
The particle density associated with the density matrix operator p is therefore obtai-

ned as the restriction of z to the subspace {n = 0}, or equivalently by appropriately
smoothing p across its diagonal z = y:

i 7 7 e_|77|2/25 1 d
(2.8) n(z) = z(x,0) —Eh_r)r(l) de(x—l—a,x—a)deeLJr(Rz).
Clearly, p(z,y) could also be smoothed by other sequences of decay function con-

verging to the d-distribution (see [3]). The trace of the density matrix operator
satisfies

(2.9) Trp = Z Aj = / n(z)dz.



In the sequel we will completely identify a density matrix operator p and its kernel p and
simply call them ’density matrix’.

We will next introduce the Wigner transform of a density matrix and discuss the pro-
perties it inherits. The Wigner function corresponding to a density matrix p, in the sequel
referred to as a 'physical Wigner function’, is defined by
(2.10) w(z,v) = L/ z(z,m)e”""dy, z,v € R
(2m)? Jga
Since p is self-adjoint and Hilbert-Schmidt, the Wigner function is real valued and w €
L2(Re x R?), with |lwl|lz = (47)~%2||p||2. The positivity and the finite trace of p can also
be reformulated in terms of w, though in a somewhat more difficult fashion. As we will not
need them here, we just refer to [12]. From z € Cy(RY; Ll(Rg)) one immediately deduces
(2.11) w € Co(RE; FL(RY)).

Also, since the quantum mechanical phase space is symmetric with respect to the x and
v variables, one can obtain w € Cy(R?; FL'(R?)). This regularity of a physical Wigner
function w is in general still not sufficient to justify a definition of the particle density as
n = [wdv. However, (2.8) and (2.10) show that the particle density of a physical Wigner
function can be calculated through the following regularization, which converges in L*(R%):

(2.12) n(z) = lim/ w(w,v)e‘g|”|2/2dv € LL(RY).
e—0 Rd

For Wigner functions w € L'(R¢ x R?) this of course coincides with [wdv. However,
w(t) € LY(RZ x R?) can typically not be expected when considering the time evolution
(either by (1.1) or (2.1)) with a non-smooth potential V. The associated difficulty to define
n was also numerically experienced in [17], where a deterministic particle method for the
Wigner—Poisson system was studied.

We will now study the time evolution of quantum states under the RT-Wigner equation,
and we will show that initially ‘physical Wigner function’ will stay ‘physical’, i.e., correspond
to a positive density matrix operator with finite trace. For the rest of this section we will
only consider constant relaxation times 7 > 0 and time-independent potentials V' (z). Also,
we will assume that the Hamiltonian H = —3A + V : D(H) — L*(R?) be essentially self-
adjoint on C§°(R?) (for sufficient conditions on V see [19], [12], e.g.). Here we only mention
a condition such that the potential is a relatively bounded perturbation of —%A:

d
(2.13) Ve LP(RY) + L=(R?), p> 5 andp>2,

and then D(H) = H?(R?).

iFrom the transformations (2.6), (2.10) one easily sees that the density matrix p(z,y),
corresponding to the Wigner function solution of (2.1), satisfies the RT-Heisenberg equa-
tion:

i
ipe = (Hy — H))p— —(p—po), t>0,
(2.14) pr = (Hy — Hy)p T(p Po)

p($,y,t:0):p1($,y), xayERd'
Here, pg denotes the steady state density matrix corresponding to wg, and the subscripts
z and y indicate that this operator acts, respectively, only on the z and y variable. The
analysis of [13] and Proposition 2.1 immediately show that, for p!, py € L%(RZ x R;i), (2.14)
has a unique mild solution p € C([0,00); L*(RY x RY)). From (2.14) we easily conclude
p(z,y,t) = p(y,z,t), t > 0. Hence, the density matrix will, under temporal evolution,
continue to be self-adjoint and Hilbert-Schmidt.
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The time evolution of the Wigner equation (without relaxation term) is equivalent to
countably many Schrédinger equations for each pure quantum state ([13]). Thus, a Wigner
function solution to (1.1) can be expanded in a series of pure state Wigner functions with
constant-in-time occupation probabilities A;:

(2.15) w(t) = Ajw;(t)
JEN
Each w; corresponds via

1 — )
(216)  wilevt) = 5 /Rﬂ’j (z + gt) b; (m - g,t>e—wndn,

to a pure state wave function v;, whose time evolution is governed by the Schrodinger
equation 7oy = H1p. This equivalence was the basis of the existence and uniqueness analysis
of the Wigner—Poisson problem ([4], [9]). For the RT-Wigner equation, however, this kind
of equivalence does not hold, even for modified Hamiltonians. Therefore, the analysis of
the whole space RT-Wigner—Poisson equation requires a different approach, and will be
the subject of a subsequent paper. We remark that a different dissipative Wigner equation
model has been discussed in [11]. Since that model is based on a dissipative Hamiltonian,
equivalence to a system of Schrodinger equations has been preserved.

For the subsequent analysis we now introduce the following notation: S(t) = exp(—iHt)
is the unitary Cy group on L2(R?) generated by the closure of —iH, and T(t) = exp
[(—iH, + iH,)t] is the unitary Cy group on L*(R% x R?) generated by the closure of —iH, +
iH,. According to Th. 2.1 of [13] they are related by T'(t) = S,(t) ® Sy(—t), t € R, where
® denotes the continuous extension of a tensor product of operators, acting on L2(R%) and
L?(R%), respectively. For a function p € L*(R¢ x R?) with diagonal representation (2.4)
this then reads explicitly
(2.17) T(t)p =D Aj(Su ()b () (Sy (—1)P;(9))-

JEN
We can now formulate the main result of this section:
Theorem 2.3.
Let w!, wqy be physical Wigner functions. Then the mild solution w(t) of (2.1) will be a
physical Wigner function for t > 0.
Proof. Since w € C([0,00); L2(RZ x R?)) is real valued, we only have to prove that w(t),
t > 0 corresponds to a positive density matrix operator of trace class.

We denote the diagonal Fourier expansions of the initial and steady state density matrices
by
(2.18) Pl y) =D Ni(@)di (), polz,y) = pios()a5(y).

JEN JEN
By the assumptions on w!, wy we have {\;}, {y;} € ¢1(N), and {¢;}, {0,} are complete
o.n.s. in L2(R?). The density matrix corresponding to w satisfies (2.14), and it can be
explicitly represented by the variation-of-constants formula for inhomogeneous evolution
equations (see [18]):
pla,y,t) = e Y N (St () (S, (b (v)

JEN
| I -~ -
+= / e D i(Sult — t1)a(2))(S, (¢ — t1)o;(y))dts.
0 ;
jEN
In this form we can easily check that p(¢) is a positive operator. For any f € L?(R?) we

(2.19)
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obtain
2

/ / oy, OF (@) () dy = e~ 3 / F(2) S, (£)ep; () da

JEN
1 [t iy —
+—/ T /f(ac)Sx(t — t1)o; (2)da
T Jo JEN
As both, {S(t)1,}, {S(t)o;} also form a complete o.n.s. in L?(R?) for any ¢ € R, we readily
obtain the global estimate
(2.21) o)l < e lp"ll2 + (L = e™7)|lpoll2
from (2.19).
Since we already know that p(t) is positive we can calculate its trace in the o.n. basis
{S(t)9r}, e.g. Again using the representation (2.19), a short calculation gives

22 Y / / pler,y,8) (S (@) (S, (Db () dy = e=* 3" N+(1—e=H) S,

keEN JEN JEN

(2.20) )

dt; > 0.

and thus
(2.23) Trp(t) = e 7Trpl + (1 — e ™)Trpy.

This result can easily be extended to time-dependent potentials V' whenever they give
rise to a unitary propagator for the corresponding Hamiltonian (see, e.g. Th. X.71 of
[19]). The explicit representation of p clearly shows that the occupation probabilities of
pure quantum states are time—-dependent in the dynamics of the RT-Wigner model.

3. RT-Wigner—Poisson equation (1D periodic).

In this section we shall analyze the coupled RT-Wigner—Poisson problem and give a lo-
cal convergence result to the steady state wg for small relaxation times 7(z,v). We will
now study the solution of the following one-dimensional model with periodic boundary
conditions:

(3.1a) wt+vwx—®[V]w:—w_w0, z € (0,2r), veR >0,
T
(3.1b) w(0,v,t) = w(2m,v,t), veER, >0,
(3.1¢c) w(t =0) = w’,
(3.1d) n(z,t) :/w(ac,v,t)dv,
R
(3.1e) Vie = D(z) —n(z,t), =€ (0,2r), ¢>0,
(3.1f) V(0,t) =V (2m,t) =0, ¢>0,

and the potential is extended 2r—periodically outside of the interval (0, 27), which is needed
to define ©[V]. Since the used techniques will be very similar to the analysis of the periodic
Wigner—Poisson equation given in §4 of [2], we will only sketch the proofs here.

In order to avoid the difficulties associated with the definition of the density n, as descri-
bed in §2, problem (3.1) will be posed in the Hilbert space X := L?((0,27) xR, 1+v?), endo-
wed with the norm ||u||x = ||u/|2 + ||vu|l2. The continuous embedding X < L((0,27) x R)
then justifies the definition (3.1d).

We define the operator A : D(A) — X by Au = —wvu, and the periodic boundary
conditions are incorporated in its domain D(A) = {u € X|vu, € X;u(0,v) = u(2m,v),v €
R}. A generates a Cj group of isometries {S(¢),t € R} on X, given by S(t)u(z,v) =
u(x — vt,v), where 4 denotes the 27-periodic extension of u. The nonlinear operator
B : X — X is defined by Bu = O[V]u]]u, where the potential V[u] is the solution of the
Poisson equation (3.1e), (3.1f) with periodic extension outside of the interval (0, 27).
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For the analysis of (3.1) we will need the following result from [2]. Here and in the sequel
C denotes generic, but not necessarily equal constants.
Lemma 3.1. Let D € L'(0,27), then B is of class C* in X, and it satisfies
(3.2) |Bui — Buz||x < C(|lurllx + |luzllx + 1Dl L1 (0,27)) w1 — vzl x-

Therefore, we can consider Bu+*2=% as a locally Lipschitz perturbation of the generator
A, which is the basis of the following global existence result.
Theorem 3.2. Let D € L*(0,27), wy € X, and 7(x,v) > 19 > 0.

a) For every w! € X, (3.1) admits a unique mild solution w € C([0,00), X).
b) If w! € D(A), then w is a classical solution with w € C*(]0,00), X), w(t) € D(A)
fort>0.

Proof. The local-in—time result is obtained as an application of §6 in [18].

To obtain a global-in—time solution we will derive an a-priori estimate for ||w(t)| x,
which requires the regularity of classical solutions. This estimate then carries over to the
mild solution by a simple density argument. Since the analysis of §2 does not immediately
carry over to the space periodic case, an L?—estimate of type (2.21) has to be established
again. Multlplymg (3.1a) by w and 1ntegrat1ng glves (since © is skew symmetric):

2
Wy —
63 gglul= [ [ o™ avde < Sjulluol.
and thus ;
B4 Tl < 'l + fuolla-

A uniform bound for ||w(t)||2, analogous to (2.21), can be obtained if 7(z,v) is bounded.
For the a-priori estimate on ||[vw(t)||2 we now consider the evolution equation for v = vw:

(35)  w—Au— OV (O = —QV, (O)w(t) + ———,
with the pseudo—differential operator

1 1 1
(3.6) QV(t)] = 3 [V (x + Q—iav,t> +V (x — 2—é&,,t>]

Q[V (t)] is a bounded operator in L?((0,27) x R) with [|Q[V ()]llz < [V (t)|| s (0,2r)- Mul-
tiplying (3. 5) by u and integrating gives

a0 sawoi= [ [ o —ovewn « 22 i,

and hence J )

(3-8) g @lx < NVa Bz ©.2m lw@)l2 + —llwollx-
We now use (3.4) and the estimate

(3.9) IValulllze 0,2r) < Clllullx + 1DlL10,2m))5

which follows from the Poisson equation with periodic boundary conditions. Applying
Gronwall’s inequality then shows that the solution w exists globally in time.

Using estimation techniques similar to those for the above existence and uniqueness result
we shall now give a local convergence result towards the steady state wy. We remark that
steady states of the Wigner—Poisson system are not unique, and wgy has to be chosen as
part of the RT-model.

Theorem 3.3. Let D € L1(0 27), w!, wy € X, and 1, > 1(x,v) > 79 > 0, where wy is a
steady state of (3.1), i



Then w(t) 1220 wo in X for |lw! —wol||x and 71 sufficiently small.
Proof. Like in the proof of Theorem 3.2 a) we will first establish the convergence for
classical solutions, and wg € D(A). The result then extends to mild solutions by a density
argument.

We now consider the time evolution of y = w — wp. Due to (3.10), it satisfies:

(3.10) ys = Ay + (Bw — Buwg) — %
Proceeding as before gives the estimate
d 1
(3.11) i 1v@llz < [ Bw(t) — Bwollz — —ly(t)ll2-
1

With the analogous estimate for vy(t) we finally get by using (3.2)

Ly(o)lx < 1Bu(t) — Buollx — ~ly(®)lx
(3.12) !

1
< [C(Ily(t)llx + 2flwollx + 1Dl ©.2m) = | ly®lx-
The asserted convergence now follows if
1
(3.13) C(llw" = wollx + 2flwollx + 1Dz 0,0m) < g

with C independent of w!, wy.
The convergence behavior of the RT-Wigner—Poisson system for large 7 is currently
under investigation and will be discussed in a subsequent paper.

REFERENCES

1. A. Arnold, P. A. Markowich, and N. Mauser, The one—dimensional periodic Bloch—Poisson equation,
M3AS 1 (1991), 83-112.

2. A. Arnold and C. Ringhofer, An operator splitting method for the Wigner—Poisson problem (to appear
in STAM J. Num. Anal. (1995)).

3. M. Sh. Birman, A proof of the Fredholm trace formula as an application of a simple embedding for
kernels of integral operators of trace class in L?(R™), Technical Report, Department of Mathematics,
Link6ping University.

4. F. Brezzi and P. A. Markowich, The three—dimensional Wigner—Poisson problem: Ezistence, uniqueness
and approzimation, Math. Meth. Appl. Sci. 14 (1991), 35-61.

5. F. A. Buot and K. L. Jensen, Lattice Weyl-Wigner formulation of exact many—body quantum—transport
theory and applications to novel solid—state quantum—based devices, Phys. Rev. B 42 (1990), 9429-9457.

6. D. Ferry and H. Grubin, Quantum transport in semiconductor devices (1995) (to appear in Solid State
Physics, Academic Press, NY).

7. W. R. Frensley, Wigner function model of a resonant—tunneling semiconductor device, Phys. Rev. B36
(1987), 1570-1580.

8. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Ame-
rican Mathematical Society, Providence, 1969.

9. R. Illner, H. Lange, and P. F. Zweifel, Global existence, uniqueness and asymptotic behavior of solutions
of the Wigner—Poisson and Schrédinger—Poisson systems, Math. Meth. Appl. Sc. 17 (1994), 349-376.

10. N. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, Self-consistent study of the resonant
tunneling diode, Phys. Rev. B 39 (1989), 7720-7735.

11. H. Lange and P. F. Zweifel, Dissipation in Wigner-Poisson systems, J. of Math. Physics 35 (1994),
1513-1521.

12. P. L. Lions and T. Paul, Sur les mesures de Wigner, Revista Mathematica Iberoamericana 9 (1993),
553-618.

13. P. A. Markowich, On the equivalence of the Schriodinger and the quantum Liouville equations, Math.
Meth. in the Appl. Sci. 11 (1989), 459-4609.

14. P. A. Markowich and C. Ringhofer, An analysis of the quantum Liouville equation, Z. angew. Math.
Mech. 69 (1989), 121-127.



15

16.

17.

18.

19.

. P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer Verlag, Wien,
New York, 1990.

F. Nier, A stationary Schrédinger—Poisson system arising from the modeling of electronic devices,
Forum Math. 2 (1990), 489-510.

F. Nier, Application de la méthode particulaire d [’équation de Wigner—mise en oeuvre numerique,
Ph.D. thesis at Ecole Polytechnique (1991).

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied
Mathematical Sciences (F. John, J. E. Marsden, and L. Sirovich, eds.), vol. 44, Springer—Verlag, New
York, 1983.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. II: Fourier analysis, self-
adjointness, Academic Press, New York, San Francisco, and London, 1975.

FACHBEREICH MATHEMATIK, TU-BERLIN, STRASSE DES 17. Juni 136, D-10623 BERLIN GERMANY
Current address: Department of Mathematics, Purdue University, West Lafayette, IN 47907
E-mail address: aarnold@math.purdue.edu



