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The Relaxation-Time von Neumann-Poisson Equation

This paper is concerned with the relazation-time von Neumann-Poisson (or quantum Liouville-Poisson) equation in
three spatial dimensions which describes the self-consistent time evolution of an open quantum mechanical system
that include some relazation mechanism. This model and the equivalent relazation-time Wigner-Poisson system play
an important role in the simulation of quantum semiconductor devices.

We prove that the evolution is a positivity preserving map, satisfying the Lindblad condition. The nonlinear
evolution problem is formulated as an abstract Cauchy problem in the space of Hermitian trace class operators.
For initial density matrices with finite kinetic energy we prove the global-in-time existence and uniqueness of mild
solutions. A key ingredient for our analysis is a new generalization of the Lieb- Thirring inequality for density matriz
operators. We also present a local convergence result towards the steady state of the system.

1. Introduction

In this paper we shall discuss the relaxation-time von Neumann-Poisson (RT — vN P) equation, which is the simp-
lest physically relevant quantum mechanical model to account for electron—phonon scattering. Together with the
equivalent RT-Wigner-Poisson equation, it is an important model for the numerical simulation of ultra-integrated
semiconductor devices, like resonant tunneling diodes ([11], [6], [7]). Here, we will mainly focus on existence and
uniqueness results for this problem in three spatial dimensions, and on the large-time behavior of its solution. For
results on the (technically much simpler) RT-Wigner-Poisson system in one dimension with space-periodic boundary
conditions we refer to [1].

With a constant RT 7 > 0 the RT — vN P system is the following time evolution equation for the density
matrix operator p, which describes the quantum mechanical state of the considered electron ensemble at each time
t:

ip= HOp—pHt) — (- o), H(E) = -3A+V(2,8), >0,
plt =0) = p',

with the self-consistent electrostatic potential
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When considering p as an integral operator on L?(IR?), the (non-negative) particle density n[p] is (formally) obtained
from the integral kernel as n(z,t) = p(x, z,t). po is usually chosen as a steady state of the vN P (or, equivalently, the
Schrodinger—Poisson) system, and it models the state of phonons in thermodynamic equilibrium (see, e.g., [12]). The
presented framework also allows to include more realistic self-consistent interaction potentials, which are important
in several applications to semiconductor devices. In the simplest case, exchange-correlation potentials are of the
form V,,(x,t) = —an(z,t)5, a > 0 ([8]), and this extension of the model (1-2) will be analyzed in a subsequent
paper.

The usual framework for (1) in quantum statistical mechanics is to consider p as a positive, Hermitian trace
class operator. For physical applications of model (1-2) one always assume p! > 0, pp > 0, and Trp! = Trpy = 1.
This implies p(t) > 0, Tr p(t) = 1 (see §2), and it allows us to verify that the open quantum system (1) is in Lindblad
form [5,9]. In the sequel (uk, 9k )ren denotes the eigenpairs of py. Since {¢k }rew is a complete o.n.s. of L2(IR?), it
is easy to verify that the RT-term of (1) can be represented as

1
-

(PTrpo—poTrp) = > L3 Ljkp+ pLjpLjk — 2LxpLiy, (3)
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with the Lindblad operators Ljr = \/pr /7 |pr > < ¢;|. Hence, the time evolution of (1) can be physically realized
through the interaction of the considered electron ensemble with some “environment”. The evolution of this larger,
closed quantum system (i.e., electrons + environment) is then unitary [9].



In the next Section we will sketch the existence and uniqueness analysis of the RT — v N P system, and give a
local convergence result towards the steady state py. For the details of the proofs we refer to [2].

2. Analysis

In this Section we will establish the existence and uniqueness of mild, global-in-time solutions to the RT — v NP
problem (1-2) for initial data p! having finite mass and finite kinetic energy. We remark that this equation cannot
be written as a system of Schrodinger equations that are weakly coupled in terms of the potential V. In contrast to
the situation in the Wigner-Poisson equation [3], the relaxation term introduces here a mixing of the ‘pure quantum
states’, i.e., eigenvectors of p’.

We first introduce the notation J; for the space of trace class operators acting on L?(IR?), endowed with the
norm ||plli = Tr|p|. For a Hermitian trace class operators p let {\;};emn denote its eigenvalues, and {¢;};en its
eigenfunctions, which form a complete o.n.s. in L?(IR?).

We now define the particle density n and the kinetic energy Eiin associated with the (not necessarily positive)
Hermitian operator p. They coincide with the usual physical notions only for ‘physical quantum states’, i.e., for
positive operators p.

n(z) =Y Al @), (4)
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where Hy = —1A is the free Hamiltonian. The bar in (5) denotes the extension of the operator from its original

domain H!(IR?) to L2(IR?) (if p is regular enough).
The Cauchy problem (1-2, 4) will now be considered in the (real) Banach space

1 1T
Z :={p €9y |pHermitian, H pHZ € J1},

1 1
equipped with the norm ||p||z = ||p]l1 + ||Hg pHg ||1- The local-in-time analysis is based on considering the nonli-
nearity of (1),

F(p) = =i(Vp—pV) = 1/7(p = po)

as a locally Lipschitz perturbation of the free evolution operator ho(p) = —i( Hop — pHy ) in the space Z. From the
analysis in [4], Chap. XVII B, §5 it easily follows that hg is the infinitesimal generator of an isometric Cy group
Go(t) on Z, which has the explicit representation

Go (t)ﬁ — e_iHOtﬁeiHot.

The key point of the analysis is the proof that, for pp € Z, F maps Z into itself. This is based on a new
generalization of the Lieb-Thirring inequality ([2], [10]), which reads in IR3:

~ S S 3—q
Inlly < Collpl} [ Tx (Hg [plH) ™", 1<q<3, 6= T (6)

From (2) one then easily obtains the following estimate for V' = V[p]:
Voo + IVViz + [|AV]]2 < Clipllz, (7)

which suffices to prove F' : Z — Z. By standard arguments of semigroup theory this proves existence and uniqueness
of a local solution p € C([0, tmax); Z)-

To show that this solution exists globally in time it remains to derive a-priori estimates for ||p||z.
Lemma 1. Let p!, po € Z, and p* >0, po > 0. Then, p(t) > 0 for t € [0, tmax), and

Trpt) =e = Trp' + (1 — e 7) Trpo. (8)



Proof. Using the unitary propagator U(¢,s) associated with the Hamiltonian Hy + V' (¢), we can represent
the solution of (1) as

; 1 [t
At = e 2 U 05U, 1) + - / Ut 50U (s, £)ds, ()
0

T

and the assertion follows immediately.

For the energy estimate we first introduce the potential energy of the state p:
o 1 g 1 .
Epor(7) = 5 T (VIFD) = 5 VVIAIE: (10)

The total energy of the system is then given by Eiot(p) = Ekin(p)+ Epot(p), and both of these terms are non-negative.
If p! > 0 and py > 0 one then derives the estimate (see [2])

Eiot(p(t)) < €7 Eyoe(5') + (1 — €77 ) Eyor (o). (11)

Relations (8) and (11) show that ||p]|z stays uniformly bounded, and we can thus formulate the main result
of this Section in

Theorem 2. Let p!, py € Z, and p' > 0, po > 0. Then the RT —vN P system (1-2) has a unique mild, global solution
p € Cp([0,0); Z).

We will now turn to the question of convergence p(t) — po as t — oo, if po is a steady state of the vNP
equation. For non-trivial steady states to exist, we have to add an external time—independent confinement potential
W to the Hamiltonian in (1) (see [12]). We will assume here that it is bounded, satisfying an estimate

[Wloo + VW[5 + [[AW ]2 < Ch, (12)

and such that the self-consistent Hamiltonian H = Hy + V[p] + V. has a non-vanishing point spectrum. The
(non-unique) steady state pp will then be a linear combination of the finite number of corresponding bound states.
Including such a confinement potential does not change the above analysis of (1-2). An unbounded potential W,
however, would require some technical modifications and is yet an unsolved problem.

We formulate the local convergence result in

Theorem 3. Let p’, po € Z, and p’ > 0, po > 0, and assume that (py, Vo) is a steady state of the RT —vN P equation
with a bounded confinement potential W. Then p(t) 20 po in Z for

~ ~ 1
Az + Iollz + 1] < -, (13)

with some generic constant C, and Cy from (12).

Proof. We consider the evolution equation for &(t) = p(t) — po:
~ s PO PO s A~ 1.
ot =ho(o) —i[V(t)p—pV(t) — Vopo + poVo] —i[Wa — oW ] — ~0. (14)

The idea of the proof is that for 7 small enough (in comparison with the kinetic energy of the initial and steady
states), the RT term compensates the quadratic term in the r.h.s. of (14). Its solution can be represented as

5(t) = e~ FGo(t)5" —i/O e™ T Go(t—s) [V(5)p(s) — p(s)V (s) — Vopo + PoVo + W5 (s) — 5(s)W] ds.(15)

Since Go(t) is an isometry on Z, we easily estimate using (7) and (12):

t
o)z < e =I5z + 0/0 e = [llp()llz + lpollz + Crl o (s) | zds-

The assertion then follows from ||p(s)||z < ||[o(s)llz + ||pollz and (13).

We remark that, if pp is a steady state of the vIN P system, it trivially is also a steady state of (1-2) with the
same confinement potential. However, the uniqueness of steady states of (1-2) is still an open problem. Consequently,
the question of global convergence p(t) — po is yet unsolved.
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