On linear hypocoercive BGK models
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Abstract We study hypocoercivity for a class of linear and lineariBs8K mod-
els for discrete and continuous phase spaces. We develdpdseior constructing
entropy functionals that prove exponential rates of rdiarato equilibrium. Our
strategies are based on the entropy and spectral methaggjrayLyapunov’s di-
rect method (even for “infinite matrices” appearing for éonbus phase spaces) to
construct appropriate entropy functionals. Finally, wsogbrove local asymptotic
stability of a nonlinear BGK model.
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1 Introduction

This paper is concerned with the large time behavior of lilBaK models (named
after the physicists Bhatnagar-Gross-Krook [5]) for a ghsisace density(x, v,t);
x, v e RY, satisfying the kinetic evolution equation

fot v Oxf — OV -0y f = QF == My (v) /d Fxvt) dv—f(xvt), t>0,
R
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with some given confinement potentia{x) and whereMt denotes the normalized
Maxwellian at some temperatuie

Mt (v) = (2mT)~9/2gM?/2T |
We assume that the initial condition is normalized as

/ f(x,v,0)dxdv=1,
JRAxR

and this normalization persists under the flow of (1.1). TurefionT (t) is defined
so that the energy is conserved:

2 2
/ ['V +v<x)} fxv) v = [ [V +v<x)} f(x,0) dxev —: Eo .
RA % Rd 2 Rd xRd 2

This is achieved in case
T(t) = 2 {EO_ / V(x)p(x,t)dx} , (1.2)
d JRd

wherep(x,t) := Jra f(X,v,t)dv, which completes the specification of the equation.
This model differs form the usual BGK model in that the Maxiiegl Mt has
a spatially constant temperature and zero momentum. Traréady a simplifi-
cation of the standard BGK model in whid#it would be replaced by the local
Maxwellian corresponding td; i.e., the local Maxwellian with the same hydro-
dynamic moments aé. However, (1.1)-(1.2) is still non-linear sindgt) depends
linearly onf, but thenMt depends nonlinearly oh. This simplified equation arises
in certain models of thermostated systems [4]. Under safftayrowth assumptions
onV as|x| — o, the unigue normalized steady state of (1.1) is

f2(x,v) = exp(—_éo V(x)+ 2]> ,

where the normalization constant shall be included endT. such that the energy
associated td® is Ep.

In fact, we simplify the model further: We takk= 1, replace the spatial domain
RY by the unit circleT?, and then dispense with the confining potential. Thus we
shall first investigate the linear BGK model

fi+v fix=Qf = MT(V)/ f(x,vt) dv—f(x,vt), t>0. (1.3)
R

Let dX denote the normalized Lebesgue measurd §nand consider normalized
initial data f(x,v,0) such that/;1,  f(X,v,0)d%dv = 1 (a normalization which is

conserved under the flow). In this case, equation (1.2) ferteimperature reduces
to T (t) = 2Ep, independent of, with
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Eo:= ﬁf(x,v, 0) dxdv .
TIxR 2

For the simplified linear equation (1.3), the unique steddiedsf* = My, uni-
form on the circle. We shall study the rate at which normaligelutions of (1.3)
approach the steady stat® = Mt ast — . This problem is interesting since the
collision mechanism drives the local velocity distributitowardsM+, but a more
complicated mechanism involving the interaction of theatning termvdy and the
collision operatoR is responsible for the emergence of spatial uniformity.

To elucidate this key point, let us define the operatday

Lf(x V) :=—=vokf(x,v)+Qf(x,v).
Then the evolution equation (1.3) can be writtn= L f. Let Z denote the
weighted spac&?(T! x R;M;%(v) dv). ThenQ is self-adjoint on#, L {® = 0,
and a simple computation shows thaf {t) is a solution of (1.3),
d o
glfO-f 15 = 2(F (1), L f (1)) = 2(F (1), QF (1)) = —2[| f — M3,
where, as beforg(x,t) := [ f(X,v,t)dv. Thus, while the nornj| f (t) — || ,» is

monotone decreasing, the derivative is zero whengftgtas the fornt (t) = Mrp
for anysmooth density. In particular, the inequality

(f =1 L(f =) <A f =715 (1.4)
is valid in general forA = 0, but for no positive value oA. If (1.4) were valid
for someA > 0, we would have hag/f(t) — |2, < e ||f(0) — f=||2, for all
solutions of our equation, and we would say that the evatugiguation isoercive
However, while this is not the case, it does turn out that dileh&s constants
1< C < wandA > 0 such that

[f(t)— 2|3, <Ce ™| f(0)— 73, . (1.5)

(The fact that there exist initial dafe0) # f* for which the derivative of the norm
is zero shows that necessar@ly> 1.) In Villani's terminology (se&3.2 of [21]),
this means that our evolution equatiorhigoocoercive

Many hypocoercive equations have been studied in recens Y25 12, 11, 10,
2], including BGK models ir$1.4 and§3.1 of [10] (see als@4.1 below), but sharp
decay rates were rarely an issue there. The fact that naedasiolutions of (1.3)
converge exponentially fast abmerate to f® is a consequence of a probabilistic
analysis of such equations in [4]: In fact, equation (1.3h&sKolmogorov forward
equation for a certain Markov process, and as shown in [4Jrgnnaent based on
a Doeblin condition yields exponential convergence. Hawgethis approach relies
on compactness arguments and does not yield explicit védues or A. We shall
discuss another approach to the problem of establishingdoggcivity for such
models that does yield explicit — and quite reasonable -egdflorC andA. To this
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end, our main tool will be variants of trentropy—entropy production methodur
first main result will be a decay estimate for (1.3):

Theorem 1. [decay estimate fo1.3)] Fix unit temperature T= 1. There exists an
entropy functional &f ) satisfying

1
Se(f) < [If — M5, < 4e(f)

such that for all (normalized) solutiongth of (1.3) with &f') < oo,

E(f(t)) < eft<0.547592..e(fl) , t> 0.

Finally, we shall study the linearization of a one dimenaloBGK equation
around a Maxwellian with some constantxmemperature. In one dimension, if col-
lisions conserve both energy and momentum, they are trivizé only kinematic
possibilities are an exchange of velocities which has neceffit all at the kinetic
level. Therefore, in one dimension the natural BGK equatvanich would corre-
spond for example to the Kac equation [13], uses Maxwell@gtermined by the
density and temperature alone. The method will be appli¢gdedhree dimensional
equation in a follow-up paper.

For a probability densityf (x,v) on T! x R we thus consider the nonlinear BGK
equation

ft(X,V,t) +Vv fX(vaat) = Mf(X,V,t) - f(X,V,t) ’ t > O» (16)

whereM; is the local Maxwellian having the same local density andhfterature”
asf: The density is defined ggx,t) := [ f(X,v,t) dvand the pressure &Xx,t) :=

Jr V2T (x,v;t) dv. In analogy to the situation with zero velocity we shall retethe
conditional second momerit,(x,t) := P(x,t)/p(x,t) as temperature (with the gas
constant scaled &= 1). Then, for fixed, the local MaxwelliarMV; is defined as

- 3/2
Mi(xv) = —PX)gv2r2fio _ PV veore/2p00 , 1.7)

v/ 27T (X) 2mP(x)

and we shall mostly use the second version of it in the sedumd. existence of
global solutions for the Cauchy problem of similar nonlinB&K models has been
provenin [16, 18, 7].

We assumef;1p(x) dX = 1 and defineT := [71 P(x) dX, which are both con-
served by the flow of (1.6). Now we considérclose to the global equilibrium
Mt (v), with h defined byf = Mt +h. Then

p(xt) =1+ 0(xt) with o(x,t) ::/ h(x,v,t) dv,
® (1.8)
P(xt) =T+1(xt)  with  1(xt):= /szh(x,v,t) dv,
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which implies
/Tlo(x,t) k=0 and /Tlr(x,t) d&R=0. (1.9)
The perturbatior then satisfies
he (X, v, t) +V (X, v t) = [Mf (X, v,t) — M7 (V)] —h(x,»t), t>0.

For o andt small we have

_ _ M CR(1+o()/2T+T(x) LT
M =M = o) vz
(1.10)
3 2 1 2
~ (2 - ;/T> Mr (V)0 (x) + (_ZT + 2VTZ> Mt (V)T(X) ,
(1.11)

which yields the linearized BGK model that we shall analyzthis paper:

he (X, Vi t) +V (X, v, t) (1.12)
2 \2
— My (V) Kg . ;’T) o(xt) + (-21T n 2'I'2> r(x,t)} Chixvt), t>0.

Following the same approach as for Theorem 1 we shall obtdétay estimate for
(1.12), and then local asymptotic stability for the nordinBGK equation (1.6). For
the latter purpose, we need to introduce another set of norms

Fory> 0, let HY(T!) be the Sobolev space consisting of the completion of
smooth functiong on T in the Hilbertian norm

191y = kgz(lJr k%)Y |l .

where ¢y is the kth Fourier coefficient of¢. Let %%, denote the Hilbert space
HY(T) ® L2(R;M71). Then the inner product i, is given by

(f.9)0 = /Tl/RT(x,v) [(1fdf)yg(x,v)} M; 1 (v)dvdx .

Theorem 2. [decay estimates fo(1.12) (1.6)] Fix unit temperature = 1.
(a) For all y > O there is an entropy functional,€f ) satisfying

2 2 4

&) < IIf =M% < zey(f) (1.13)

such that if h= f —Mj is a solution of the linearized BGK equatigh.12)
with initial data H = f' —M; such that f71 [z(1,v?) f' dvdf = (1, 1), and
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e,(f') < o, then
e(f(t) <ePe,(f'), t>0. (1.14)

(b) Moreover, for ally > 1/2, there is an explicitly computabi@, > 0 such that
if f is a solution of the nonlinear BGK equatidf.6) with initial data f' such
that fr1 fp(1,V?) f' dvdf = (1,1), and ||f' — My, < &y, then for the same
entropy function g (1.14)is again valid.

Before turning to our main investigation, i.e. exponerdiatay in the BGK equa-
tions (1.3), (1.12), (1.6), we shall study some still simpl®dels with a finite num-
ber of positions and velocities: I§2 we analyze coercive BGK models with first
two and then finitely many velocities using relative entespiSince this approach
fails for discrete hypocoercive BGK models (considered3dj their analysis will
be based on spectral methods and Lyapunov’s direct metdad.concerned with
space-inhomogeneous BGK models. We shall start with itselie velocity analogs
in §4.1-84.2, where the velocity modes will be expanded in Krawtchpolynomi-
als — a discrete analog of the Hermite polynomials. In sacti@ we shall finally
analyze the exponential convergence of the linear BGK équét.3), using a Her-
mite expansion of the velocity modes and an adaption of Lyaps! direct method,
used here for “infinite matrices”. This will yield the proof ®heorem 1. This strat-
egy is modified in§4.4 for the linearized BGK equation (1.12), proving Theorem
2(a). Finally, in§4.5 we analyze the local asymptotic stability of the nordinBGK
equation (1.6), as stated in Theorem 2(b).

2 Discrete coercive BGK models

In this section we consider space-homogeneous BGK modéisanfiinite number
of velocities. Our main tool in the investigation is the t&la entropy, which is
defined as follows (se§2.2 of [3] for more details):

Definition 1. (a) LetJ be eithefR* or R. A scalar functionp € C(J) NC?(J) sat-
isfying the conditions

Y(1)=0, w>0, ¢">0, ond (2.1)

(and hence als¢/’(1) = 0) is calledentropy generatar
(b) Let f; € LY(R?), f € L1 (R2) with [ [ fy dxdv= [ [ fodxdv=1 and% (x,v) €
Ja.e. (w.r.t. the measure(dxdv)). Then

ep(falf2) i= //]de w(%) f, dxdv >0 2.2)

is called arelative entropyof f1 with respect tof, with generating functionp.
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In applications, the mostimportant examples are the ltwaic entropye; ( f1|f2),
generated by
yr(o):=0clnoc—-o+1,

and the power law entropiesp( f1| f2), generated by
Yp(0):=0P-1-p(c—-1), p>1. (2.3)

Except for the quadratic entrogy we shall always usé=R™". Below we shall use
also a second family of power law entropigs f1| f2) generated by

Pp(0):=lo—1P, p>1. (2.4)

The above definition clearly shows the(fy|f2) = 0 iff f; = fo. In the next
section we shall hence try to prove that solutioi$) to BGK models satisfy
ey(f(t)|f*) — 0ast — . For the entropiesy, p > 1 such a convergence in relative
entropy then also impligls'—convergence, due to ti@sisAar-Kullback inequality

2
p(p—1)

where we used);(0) < @p(0)/Wy(1), 0 > 0 in the second inequality. For the
entropies defined in (2.4) one has a substitute for the @skuallback inequality,
namely the identity

[ f1— f2||E1(de) <2eg(fi|f2) < ep(f1lf2),

Ep(frlf2) = [f1— f2||fp(f217p) :

To illustrate the standard entropy method on a very simplamgte, we first
revisit the ODE (1.10) from [3] for the vectdr(t) = (f(t), f2(t))" € R?:

d

—f= > .
g =AAf =0, (2.5)
f(0)=f' e R?,

with the parametek > 0, and the matriA has BGK form:

()P () e

This ODE can be seen as ashomogeneous variant of (1.3) with just two discrete
velocities. In fact, on the right hand side of (2.6), the cofuvector(%, 3)" cor-
responds to the Maxwelliall(v) in the BGK equation (1.3), and the row vector
(1, 1) corresponds to the velocity integral. The symmetric mafrikas an eigen-
value 0 with corresponding eigenvectt := (%, %)T and an eigenvalue -2. Hence
A is coercive on{ f*}+. Since each column @ sums up to 0, the “total mass” of
the system, i.efi(t) + f2(t), stays constant in time. Hence, we shall assume w.l.0.g.
that f' is normalized, i.ef] + f) = 1. Thus, ag — o, f(t) = f° + (f' — f*) e 2!
converges td® exponentially with rate 2. For ] , > 0 we havefy »(t) > 0.
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In analogy to Definition 1 we introduce for (2.5) (with= 2) the relative entropy
generated byp:

oy (i)Y <
aﬂfa)f)r—;;w(wo)n. (2.7)
Its time derivative under the flow of (2.5) reads
d oy _ o Fa(t) s falt)
gotoim—-atn-r v(52) v (%) es

— Iy (FO)[f°) = 22" (Q)(f1— f2)? <0,

where = {(t) is an intermediate value betweeri @) and 2f»(t). 1y (f(t)|f*)
denotes th&isher information(of f(t) w.r.t. ).

As pointed out in [3], it is not obvious to bound this Fishefoimation from
below directly by a multiple of the relative entropy (excéptquadratic entropies).
The goal of such an estimate would be to establish the expi@ahdacay of the rel-
ative entropy. Hence, it is the essence of the entropy mdthodnsider the entropy
dissipation rate: Differentiating (2.8) once more in tinieeg

d
Ry(f(0] 1) i= = lp(F (O] 1) (2.9)
= 21y (F(1)]F2) +A2(F1(t) — fo(t 2[ (BOVL Ly R0 1}.
W(FOIF7) +2%(100 — 12(0)° |0 (57 o+ ' (55 ) 5
Due toy” > 0 the second term is nonnegative. Hence,
d
— W (FO11%) = 20y (FO]17).

And this yielded in [3] the exponential decay kf(f(t)|f*) and ofey(f(t)|f*)
at thesub-optimalrate 24. But this procedure can be improved easily to give the
following sharp result:

Theorem 3.Let the convex entropy generatgrsatisfy either:y” is convex on J;
or ¢ is concave on(0,1) along withy/ is convex on1,c). Then the solution to
(2.5) satisfies

lp(F(1)]F°) < ey (f'1f°), t>0, (2.10)

ep(f(1)[ ) <e ey (f'|f*), t>0. (2.11)

Proof. Case 11" convex onJ
We have for < s< 1:

sy’ (02) +(1—9)y"(01) > " (so2+ (1 —9)ar).

Integrating this inequality oves € [0, 1] yieldsV o1 # 02 € J:
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02

W(o)+y'on) | e ¥'(0)d0 _ y(on)-yloy

2.12
2 - 0> — 01 02 — 01 ’ ( )
wherek is introduced only for later reference. Here we et 1.
We now recall thaf;* = f5°. Hence, (2.9) and (2.12) give
d ® ®
Slu(fOIF%) < a1, (FO)]1°), (2.13)

and (2.10) follows. As usual in the entropy method, one netdgrates (2.13) in
time (fromt to ) to obtain

adew(f(tﬂ ) < —arey (f(1)|f"),

and this finishes the proof for the cagé convex.
Case 21’ concave or{0,1) along withy/ convex on(1, )

We may assume without loss of generality tiigt> fo. Thenfy/f° > 1> /17,
and by the tangent line inequality for the concave funct,wno 1

f f fr—f
o-in=v () (2)(55Y)

Likewise, using the tangent line inequality for the converdtion Lp’\um) ,

! & ! " E f1 - f]?o o E fl — ff’
Altogether we have
f1 f1— fil(jo / f1 " f2 fzw —f ’ fo
w()( = )zw =) and ¢ (2 2>y (2).
f1 fr fr f3 f3 222

14)

Now continuing to assume thdi > f», and using the fact thay> = f° so that
fi—fo=2(f1— f°) =2(f5 — f2),

(=t [0 () 5+ ()

Therefore,
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A2(f1— 1) {w”( f1)1+w”(:2§)éo} > 221y (F[ ).

(A
Again from (2.9) we obtain (2.13). O

Remark:

1. Concerning the logarithmic and power law entropies fr@r8) one easily ver-
ifies: Yy satisfies the conditiog/V > 0 onJ (or the inequality (2.12)) exactly
for pe [1,2]U[3, ).

2. Foryp with p € (2,3), inequality (2.12) holds withx = p%l (but not for any

larger constank). This follows fromgp(z) := y N Zp:Il >0 onR*t
andgp(0) = 0, which can be verified by elementary computations. Herare, f
p € (2,3), the entropy method yields exponential decaggiff (t)| f*°) with the

reduced rate & +1)A = (p+1)A:

ep(f(1)[f°) <e (PN (f11f°) t>0.
But the decay estimates (2.11), (2.10) are in general false € (2, 3).
In an alternative approach, one can verify for 2 < 3 the estimates
Yp(0) < ys(0), Yo =>0; Y3(0) <Cpyp(0), V0<o0<2
where[0, 2] is the maximum range of values fe&% andf%%. Here the constant

isCp = ﬁgg = g4 With (2.11) this implies

ep(f (1) %) < e PMey(f'1f) <ChePMep(f'|f°), t>0.

Hence, the entropies,, p € (2,3) still decay with the optimal rateM but at
the price of the multiplicative consta@} > 1.

3. The relative entropies,” p > 2 from (2.4) satisfy the second set of assumptions
in Theorem 3. Note thap”’ does not have to be continuouscat= 1.

2.1 Multi-velocity BGK models

Now, we consider discrete space-homogeneous BGK mod&8&:ifthe evolution
of a vectorf (t) = (f1(t), f2(t), ..., fa(t))" € R" is governed by

dy5 >
{dtf 20Af, t>0, (2.15)

£(0)=f' € RN,

for someA > 0 and a matriXA € R™" in BGK form
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P1
A=|:|e@. . 1)-1 (2.16)

Pn

with p = (p1,...,pn) " € (0,1)" such thaty_, pj = 1.

Such a matrixA has a simple eigenvalue 0 with left eigenvedtor (1,...,1)
and right eigenvector; = p, and an eigenvalue-1 with geometric multiplicity
n—1. Since each column @& sums up to 0, the “total mass” of system (2.15) stays
constant in time, i.e5_; fj(t) = 7_; /.

(j #k); such matrices are calle@ssentially non-negativer Metzler matrices [19].
An essentially non-negative matri induces via (2.15) a semi-flow which pre-
serves non-negativity of its initial daturd, i.e. fj' >0forall j=1,...,n, implies
fi(t) >0 forallt > 0.

Remark:An essentially non-negative matrix is call@dmatrix (or W-matrix in
[20]) if it has an eigenvalue O with right eigenvectdr,...,1)". Q-matrices are
the infinitesimal generators of continuous-time Markovaasses with finite state
space [15].

In the following, we consider normalized positive initiadtd f', i.e. Y1 fl=1,
such that the solutior of (2.15) is positive and normalized for alb> 0. Thus, as
t— oo, f(t) = f°+(f' — f°) e 2t converges to the normalized steady stdte= p
exponentially with rate 2.

The study of the long-time behavior of solutiohgo (2.15) is a classical topic,
an approach via entropy methods can be found in [20, 17]. thetePerthame [17,
§6.3] considers essentially positive matrices (i.e. offeinal elements are posi-
tive) to simplify the presentation. However, the resultegyalize to irreducibl&-
matrices, since only the non-negativity of off-diagonareénts is used, see also
[17, Remark 6.2]. While [17, Proposition 6.5] establishely e@xponential decay in
entropy, we aim at the optimal decay rate in the entropy aggro

We consider the time derivative of the relative entropy X2uider the flow of
(2.15)

Jep(t]r=) = _iw’(}@)m (17— ) = ~lp(fO]F*) <0 217)
J:

which is non-positive due to the properties (2.1) of an guwtrgenerator ¢’ is an
increasing function withy’(1) = 0). Next, we compute the second order derivative
of ey (f(t)|f®) w.r.t. time:
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RUFOIT™) =~ Ll (FOI1) = 5 Y 0 (H) 4

j=1
i < S (E)
=201+ 3 0 () & () = 2A001)

sinceA%2 = —A and (/" > 0. This yields the non-optimal entropy dissipation rate
2A. To obtain a better entropy dissipation rate, we want tovedt the neglected

term via .
Z ( )*(adf) > ply(f(1)[f7) >0 (2.18)

for somep > 0.

Theorem 4.Letp = (p1,...,pn) " € (0,1)"such thaty|!_; pj = 1and let the convex

entropy generatowy € C?(J) satisfy for someu > 0 and all u= (uy,...,un) " €
(0,1]"with 37_;uj = 1.

Jilw//<g)”lj(pj_ 2/,)4\% (5) wi—pp): (2.19)

Then, for all non-negative normalized initial dat4, the solution f tq(2.15)satis-
fies
ly(f () F7) < e @0y (f1]£7), >0, (2.20)
ey(f(1)|f°) <e @ +Hte, (1), t>0. (2.21)

Proof. The solutionf to (2.15) is positive and normalized for al> 0. Under As-
sumption (2.19) oy, we obtain the estimates (2.18), and

Dy (FO11) < @2+ 1) 1y(FO]1), 222

hence (2.20) follows. Next, one integrates (2.22) in tinmer(ft to ) to obtain

Zoy(110)17°) < ~(2A + 1) y(F)]1°),

and this finishes the proof. a0

For the quadratic entropy generatarinequality (2.19) holds withu = 2A. Thus
we recover the optimal decay rata 4h (2.20)—(2.21). For the logarithmic entropy
generatony; an estimate fop in (2.19) has been given in [9, 6] as

% Pmin(1— Pmin) With Pmin = ! mm PJ

.....
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Next, we consider entropy generatgrsn the sense of Definition 1, such that is
concave or(0, 1) along withy/ convex on(1, ). Thus, forf; > f;° > 0 andfy >
f, > 0, the inequalities (2.14) continue to hold. Distinguighthe cases; < pj,
uj > pj and the trivial case; = pj, we deduce foral| =1,...,n

() o -u> ()0,

hence (2.19) holds witly = 2A. However, for the entropy generatafg in (2.4)
with p > 2 the optimal value igt = (p—1)2A

In the following, we restrict ourselves to= 2 and determine the best constant
for some polynomial entropy generators:

Lemma 1. Letps, p2 € (0,1) with p1 + pp = 1. The entropy generatap (o) satisfies
condition(2.19)with

U 1 for LI"(U) = w2(0)7
1 o= 2min{p1, p2} for Y(o)=ys(o),
2—2,/1-3p2 (1—p2) >0 for y(o)= (o).

Proof. Forn = 2, the assumptions gmandu in (2.19) imply
u

—(P2—U2) = P1— Uy = P1 (U + Up) — Uy = P12 — P2U1 = P1P2( 5% — 5t )-

Thus condition (2.19) is equivalent to

i //(p])p]plp2(*_ﬁ Zij\i ( ) plpz(pz gi)>0

Settingvy := u1/py1 andvs 1= uy/po, we deduce forp(o), p > 1,
(p—1) MJ_ZPZ +V'2)_291] (Vi —Vp)% > % Vv (v —v2) Wi, ve >0,
Moreover, forv, > 0, dividing byvg and definingz:= v1 /v, we obtain
(p—1)[2"?p+p1] (z—1)2 > % [t -1](z-1) vz>o0.

We show the statement for the quartic entropy genergoo), the (simpler)
proof for quadratic and cubic entropy generators is omiftedy,, condition (2.19)
is equivalent to

9(2) :=2@pa— 1)~ fiz+3p1 -1 >0  Vz>0
with [i ;== pu/(2A). Evaluatingg(z) atz= 0 and taking the limiz — o, we deduce

the necessary conditiong3> fi and 3, > [i, respectively. The minimum af(z)
onze (0,) is zero, iff fi solvesfi? —4(3p1 — [i) (3p2 — fi) = 0. This quadratic
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polynomial has a simple positive zero given fiy=2—2,/1—3p, (1—p2) > 0,
sincepy + p2 = 1.

The expressiofig =2—2,/1—3p, (1— p2) > 0 attains its maximum 1 fqu, €
(0,1) atp, =1/2. O

Remark:The quadratic entropy, (o) satisfies Assumption (2.19) with = 2A
for all f1°, 5 € (0,1). The cubic entropys(o) and the quartic entropys(o)
satisfy (2.19) withu = 2A only for f* = f5° = %

3 A discrete hypocoercive BGK model

In this section we consider an example for a discrete ver@oith in x and v)
of (1.1). More precisely, we consider the evolution of a vedt(t) = (fj(t); =

1 ...,4)T € R4, where its four components may correspond to the followioigts
in thex— v—phase spacél, 1), (1,—1), (—1,—1), (—1,1), in this order. Its evolu-
tion is given by

adf:(AHa)f, t>0, (3.1)
f(0) = f' e R%.

Similarly to (2.6), the matriXA has BGK form:
-11 0 O
e CEEH BRGNS
0 0 1-1
where the first summand on the r.h.s. is the projection orgtdéinel ofA,
kerA = spari(1100',(0011) '].
In (3.1), the matrixB is skew-symmetric and reads
0-10 1
Bi= (1) 2 _01 —01 - <(1) _01> © (—11 _11> ' (3:3)
-10 1 O

B corresponds to a discretization of the transport operatdf.il) by symmetric
finite differences. We remark that (3.1) does not presergiipity but, as we shall
show, the hypocoercivity of (1.1). Motivated by the theofyhgperbolic systems,
one may also replace the transport operator by an upwindetization with a then
non-symmetric matri¥. Then, the resulting system would preserve positivity. But
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it would be coercive rather than hypocoercive. Here we opligouss the situation
with B given in (3.3).

The spectrum of +B is given by Q —% + @ i, —1. The unique, (in the 1-norm)
normalized steady state of (3.1) is given 5§ =w; = ;11(111])T, which spans the
kernel of A + B. Eigenvectors of the non-trivial eigenvalues are giveniby :=
(v/5, £v/3i, —v/5, 7V/3i) " andwy := (1, —1,1, —1)", and all three of them have
mass 0. This shows thétis the sharp decay rate of any (normalizéd)) towards
f. But this “spectral gap” of sizé disappears in the symmetric part of the matrix:
O'(A + @) ={0, 0, —1, —1}. Hence, the matriXA + B is only hypocoerciveon
{f*1+ (as defined by C. Villani, se§3.2 of [21]). But using an appropriate sim-
ilarity transformation ofA + B one can again recover the sharp decay rate of the
hypocoercive BGK-model (3.1) via energy or entropy methods

In particular, we shall use Lyapunov’s direct method —semba 3 in the fol-
lowing subsection— to prove decay to equilibrium for norized solutions: Iff' is
normalized, then the solution to (3.1) satisfies (for anymonRR?)

1) — 2l <ce?|f' 1], t=0,

with some generic constaot> 1.

3.1 Lyapunov'sdirect method

We consider an ODE for a vectdrt) = (fy(t), fa(t),..., fa(t)) T € R™

d
<f=Af, t>0
dt o= 3.4

{f(O):f'eR“, 34)
for some real (typically non-symmetric) matix e R™". The origin O is a steady
state of (3.4). The stability of the trivial solutiofP(t) = 0 is determined by the
eigenvalues of matriA:

Theorem 5.Let A € R™" and letA; (j = 1,...,n) denote the eigenvalues &f
(counted with their multiplicity).

(S1) The equilibrium $of (3.4)is stable if and only (ijJA; <Oforall j =1,...,n;
and (ii) all eigenvalues witflA; = 0 are non-defective

(S2) The equilibrium § of (3.4)is asymptotically stable if and only ifA; < Ofor
allj=1,...,n.

(S3) The equilibrium § of (3.4)is unstable in all other cases.

1 An eigenvalue is defective if its geometric multiplicity isistly less than its algebraic multiplic-
ity.
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To study the stability forf® via Lyapunov’s direct method, a first guess for a Lya-
punov functionV (f) is the (squared) Euclidean nomt f) = || f||3. The derivative
of V() along solutiond (t) of (3.4) satisfies

d
v (F) = (f (), (AT +A) (D).
Thus the derivative depends only on the symmetric é@ﬂ +A) of a matrixA.
Hence the choic¥ (f) = || f||3 is only suitable for symmetric matricés

To study the stability off 9(t) = 0 w.r.t. (3.4) for a genera, it is standard to
consider the generalized (squared) norm

V(f):=(f,Pf) for some symmetric, positive definite matfxc R"*".

The derivative o/ (f) along solutiond (t) of (3.4) satisfies

d
v (FO) = (A1), PT()) + (T (1), PAT(t)) = (F(1), RT (1)), (3.5)
with matrix R := ATP 4 PA. Conclusions on the stability of® are possible, de-
pending on the (negative) definitenesRpfsee e.g. [14, Proposition 7.6.1].

To determine the decay rate of an asymptotically stablagtstate, we shall use
the following algebraic result.

Lemma 2. For any fixed matrixC € C™", let t := min{CZJ{A }|A is an eigenvalue of
C}. Let{Aj|1<j < jo} be all the eigenvalues & with 00{A;} = u, only counting
their geometric multiplicity.

Ifall Aj (j =1,..., jo) are non-defective, then there exists a Hermitian, pasitiv
definite matrixP € C™" with

C*P+PC > 2uP, (3.6)

whereC* denotes the Hermitian transpose ©f Moreover, (non-unique) matrices
P satisfying(3.6) are given by

n
P:=S bjwjew', (B.7)
2

where w (j = 1,...,n) denote the eigenvectors 6f, and b € R* (j =1,...,n)
are arbitrary weights.

Remark:Lemma 2 is the complex analog of [2, Lemma 4.3] or [1, Lemm& 26
particular, ifC € R™" is a real matrix, then the inequality (3.6) of Lemma 2 holds
true for real, symmetric, positive definite matrides R"". Moreover, the case of
defective eigenvalues is also treated in [2, 1].

If A € R™" has only eigenvalues with negative real parts, then thémoisghe
unique and asymptotically stable steady st&te- 0 of (3.4). Due to Lemma 2, there
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exists a symmetric, positive definite matfxe R"*" such thatA TP+ PA < —2uP
whereu = min|0Aj|. Thus, the derivative o¥ (f) := (f, Pf) along solutions of
(3.4) satisfies

adV(f(t)) <-2uVv(f(t))  with p=min|OAj, (3.8)
which impliesV (f(t)) < e 2MV(f') and| f (t)||? < ce K| f' || for somec > 1 by
equivalence of norms dR".

In contrast, we consider next matricAse R"™" having only eigenvalues with
non-positive real part. More precisely, ktsatisfy

(A1) A hasasimple eigenvalug = 0 with left eigenvectow; € R"and right eigen-
vectorv, € R™;
(A2) the other eigenvalues (j = 2,...,n) of A have negative real part.

Then, the space of steady states of (3.4) consists of spprand solutions to (3.4)
will typically not decay to 0. More precisely, if is a solution of ODE (3.4) with
initial datum f' satisfying(w , f') = c for somec € R, then(wy, f(t)) = c for all

t > 0. Therefore we aim to prove the convergence of solutifs of (3.4) for an
initial datum f' (normalized in the sense 6fv; , f') = 1) to the unique steady state
f® e spar{vi} (again normalized agvy, f*) = 1).

Lemma 3.Let A € R™" satisfy (A1)-(A2) with non-defective eigenvalugsfor
j=1,...,n. If f is a solution of(3.4) for some normalized initial datum' f(i.e.
(wy, f!) = 1), then

If)—f=| <c|[f' —f2le ™", t>o0, (3.9

whereA, :=miny, .o |UA;| and some constante 1.

Proof. To present a unified approach for symmetric and non-symmetatrices
A satisfying (A1)—(A2), we consider again the “distorted’ct@ norm||f||p :=
(f, Pf), and the relative entropy-type functional

Ey, (FOIF) = [1F(0) — 22

with some real, symmetric and positive definite matfixo be determined. Its
derivative satisfies
d

SER(TO1F°) = ((F= 1), (ATP+PA)(f = 1))

Every matrixA € R™" induces an orthogonal decomposition®¥fvia
R" =ker(A) @ ranfA") =ker(A") @ ran(A).

Thus, there exists an orthogonal projection fri&honto rar{A), which is repre-
sented by a matri®; € R™" with P2 = P;. Due to assumption (A1), matri& "
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has a one-dimensional kernel which is spanned/yhencePw; = 0. SincewI is
a left eigenvector o\ for the eigenvalue 0, a solutidnof (3.4) for a normalized ini-
tial datumf' (i.e. (wy, f') = 1) is again normalized, i.éw , f(t)) =1 forallt > 0.
Thus,(wy, f(t) — f°) = 0iff (wy, f' — £°) =0, which impliesf (t) — f* € ranA)
for allt > 0. Moreover,

d o - .
g B (T ):<P1(f—f ), P{(ATP+PA)Py Py(f — f )>.
In order to prove

P (ATP+PA)P; < —2A,P{ PPy (3.10)

we consider the modified matrix:= A — Aview] € R™M Due to (A1)—(A2) and
the assumptions in Lemma A has only non-defective eigenvalues with negative
real part. Due to Lemma 2, there exists a real, symmetridtipesiefinite matrix

P such thatA"P + PA < —2A,P. This implies (3.10) sinc®; ((vy ®@w] ) P+
P(vi®wj ))Py = 0. Therefore we conclude

d (o] (o]

G e (FOIF7) < —2AEy, (F([F7), (3.11)
andEy, (f(1)|f*) < sz(f' |f°)e~ 2! follows. Moreover, 0< Apminl <P <Apmax,
whereApmin > 0 is the smallest eigenvalue aAgmax > 0 is the biggest eigenvalue
of P. Therefore Apmin|| 113 < || |3 < Apmaxl| f||3 and (3.9) follows. 0

Remark:For a symmetric matrid, the choice® = | is admissible and one recovers
the optimal decay rate and constant 1 in estimate (3.9).

Remark:Assume now that the matriA from Lemma 3 satisfies also Kéy) =
ker(AT), which corresponds tdetailed balancdor the steady state. Then, Lemma
3 allows for a simpler proof: Letv; = f* € R" be a normalized steady state. Then
the orthogonal projector; ® Wi ' commutes with botiA andA'. Let P; denote
its complementary projection. Then (&) is invariant undee!, and (3.10) with

P from (3.7) follows from Lemma 2 applied # restricted to ra(Ps).

4 Space-inhomogeneous BGK models

In this section we study the large-time behavior of the BGKiadpn (1.3) on
L2(T* x R;M71(v) dv) with periodic boundary conditions ir We start with the

x—Fourier series of : _
fxvt) = ngk(v,t)ékx, (4.1)
ke
and obtain the following evolution equation for the spatmadesfy, k € Z:

0tfk+ikvfk:ka:MT(v)/fk(v,t)dv—fk(v,t), KEZ;t>0.  (4.2)
R
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Since the BGK operatd projects onto the centered Maxwellian at temperaiure
it is natural to consider (4.2) in the basis spanned by theniterfunctions (inv).
This is natural for the following reason:

The Hermite polynomials (for temperatui® are the system of orthonormal
polynomials that one obtains by applying the Gram-Schmittiamormalization
procedure to the sequence of monomi@ls} in L2(Mr); let P(v) denote the/th
Hermite polynomial. Thélermite functionshemselves are the functions of the form
§¢(v) = P(v)Mr(v), and evidently these are orthonormallifi M 1). This is the
space in which we work.

The key fact concerning the Hermite functions is that mtittggion by v acts
on them in a very simple way, and this is relevant since thiemaacf our streaming
operator on th&th mode is multiplication bykv. In fact, the reason for the simple
nature of its action is very general and thus applies to gdizations of the Hermite
functions. Since we use this below, we explain the simple@adrom a general
point of view, using only the fact thad is even.

Note that multiplication by is evidently self adjoint oﬂlz(M{l). Also, for each
¢,vg,(v) is in the span of §o, ..., §¢41}. Hence, fom> ¢+ 1

0= <§m7Vg£>|_2(MT—1) = <gé7ng>L2(M_Fl)

from which we conclude that thé m matrix elements of multiplication by are
zero for|¢ —m| > 2. Finally, by the symmetry d¥ir, the diagonal matrix elements
are all zero. Hencan the Hermite basis, multiplication by v is represented by a
tridiagonal symmetric matrix that is zero on the main diagbhe operatoR is
evidently diagonal in the Hermite basis. Hence the opelatae= —ikv+ Q has a
simple tridiagonal structure. We shall see that the magépresentingkv is

0vio .-
_ V10 vV20
ikvT| 0 v2 0 V3

0 V3.

while Q = diag0, -1, -1, ---).

The infinite tridiagonal matrix representithg = —ikv+ Q in the Hermite basis
is still not easy to analyze directly. We cannot computeigemfunctions in closed
form, and hence cannot apply formula (3.7) to implement Lyegy’'s method.

However, we can do this for a related family of discrete vijomodels, since
then we are dealing with finite matrices. The discrete modedig the binomial
approximation to the Gaussian distribution, are suffityeciose in structure to the
continuous velocity BGK model that they suggest an ansatthioP operator that
specifies the entropy function norm. In fact, a complete tgmtuof a 2-velocity
model provides the essential hint for proving hypocoetgiuf the continuous ve-
locity BGK model.

We shall present the details of this analysi$4#3 below. Here, the above re-
mark only serves as a motivation for our analysis of discoretecity models, which
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are velocity discretizations of the BGK equation (1.3). Walkstart with the two
velocity case, and then discuss its generalizatiamvelocities.

4.1 A two velocity BGK model

In this section we revisit the following hyperbolic systemhich can be considered
as a kinetic equation with the two velocities- +0, and some parameter> 0:

Aterod =2 (T 1)), 120, 4.3)

for the distributionsf_ (x,t) of right- and left-moving particles,72-periodic inx.
The matrix of the interaction term on the r.h.s. has the form

1/-11
2( 1 —1> ’
and hence (4.3) is also of BGK-form. Due to the conservatibthe total mass
. 02"(f+(x,t) + f_(xt)) dxof (4.3), its unique normalized steady statéfs= f* =
const= A [ET(fL(x) + f' (x)) dx.
This toy model (with the choice = 1) was analyzed i§1.4 of [10] to illustrate
the hypocoercivity method presented there. As for (4.2)Farier transform (4.3)

in x and expand it in the discrete velocity bagig), (*,)}. This yields for each
modek € Z the following decoupled ODE-system:

d

0 ko
auk:*CkUka Cy = (ika 1 >, (4.9)

with ug(t) € C2, k € Z. The matrices-Cy have the eigenvaluesi + /1 — k202

in the casek| < s and—3 +i,/k?02 — % in the casek| > 5. Hence, as — «,
Uo(t) converges to an eigenvector of the O-eigenvaluey§e= (f©+ £, 0)", with

the exponential ratdg := 1. All modesu(t) with k # 0 converge tasy = 0 with

an exponential rate determined by the spectral gap of thexr@t. For simplicity

we shall assume here th§6t ¢ N. This avoids defective eigenvalues of the matrices
Ck, but they could be included as discussed in Lemma 4.3 of [2¢. §pectral gap

of the low modes (i.e. for & |k| < 5) is A == 3 — 1/ — k202, and it isA, == 3
for the high modes. Hence, the exponential decay rate oféhaence of modes
{uk(t) }kez is given by the decay of the modks= +£1: A := minkez{Ak} = O (% —

% — 0?). By Plancherel's theorem this is then also the convergeatesof f (t) =

(f4(t), f_(t))" towards the steady staf&® = (2, f)7.
The goal of entropy methods is to prove this exponential ylemaards equilib-
rium, possibly with the sharp rate, by constructing an appate Lyapunov func-
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tional. In the hypocoercive method developed in [10] théharg obtained, for the
caseo = 1 and the quadratic entropy, a decay rate bounded abO\ée Byt the
sharp rate for this case = % We shall now construct a refined Lyapunov func-
tional that captures the sharp decay rate.

Following Lemma 2(i) we introduce the positive definite sBormation matrices
Po:=1,

242 i 1
P, = <4k0 2ika ), for 0< |kl < —

2iko 2—4k?0? 20’
and i
1 5~ 1
Py = < i 2"0) , for |k >—. (4.5)
2&—0 1 20

In the latter caseRy is unique only up to a multiplicative constant, which is oos
here such that T’ = n = 2. We define the “distorted” vector norms for each mode

Uy
[[ukllpy == v/ (Uk, PiUk) -

Due to the ODE (4.4) and the matrix inequality (3.6) it sadisfi
d
aHUkII%k = — (U, (CikPc+PCi ) < —2Ac w3, ke Z\{0}, (4.6)
and hence
lue(t) = W llp, < €™ [uk(0) — llp,, t>0, ke Z. (4.7)

With this motivation we define the following norm as a Lyaputfionctional for
the sequence of modes:

E({udkez) == /> llull3,- (4.8)
keZ
From (4.7) we obtain

E({u(t) —u}) <eME({w(0)—u7}), t>0,

with A = minkez{Ak}. Due to Plancherel’s theorem, this is also a norm for the
corresponding distributiont= (f,, f_)':

E({Uk}) = HBfHLZ(o,szZ) )

whereB is a (nonlocal) bounded operator 0A(0, 271, R?) with bounded inverse.
More precisely,B = | + K, whereK is a compact operator withK|| < 1, since
Pk iy | (cf. (4.5)). This implies the sought-for exponential deadyf (t) with
sharp rate:

Theorem 6. Let% ¢ N. Then the solution t¢4.3) satisfies
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[f(t)— fooHLZ(O,er,RZ) < Ce’AtH fl— meLZ(O,Zn',RZ)a t>0,

with A = 0(3 — /% — 02) and some generic constant-cO.

4.2 A multi-velocity BGK model

We now turn to a discrete velocity model analog of the line&kBequation (1.3),
and we shall establish its hypocoercivity. Fixing unit tesrgiureT, recall that as a
consequence of the Central Limit Theorem, the measlyf&)dv is the (weak) limit

of a sequence of discrete probability measynast where

n n
Hhi= % 2”<_)52-_ ,
n £ i (2j—-n)/v/n

wheredy denotes the unit massyt R. Each of the probability measurgg, n€ N,
has zero mean and unit variance.

The Hermite polynomials have a natural discrete analogehatheKrawtchouk
polynomials A good reference containing proofs of all of the facts we lhslew is
the survey [8]. (We are only concerned with a special famflyhe more general
Krawtchouk polynomials discussed in [8], namely the 2 case in the terminology
used there.) The standard Krawtchouk polynomials of ordere a set oh+ 1
polynomialsK,m; m= 0,...,n that are orthogonal with respect to the probability

measure N
n
n = 2”(.)6-7
& i)°

and are given by the following generating function:
n
1+ (1-1)"= 5 t"Kam(v) . (4.9)
m=0

The leading coefficient df, m has the sigri—1)™. One has the orthogonality rela-
tions
") m=/¢
Kn.mKn.e dwn = <m) ’ 4.10
/R n,mKn, ¢ Qln {0 m£ (. ( )

Then thediscrete Hermite polynomialsd# are defined by

~1/2
Hnm(V) == (—1)"‘(“) Knm <n+‘mv> for m=0,1,...,n;vEeR.

m 2 2
(4.11)
Then{Hno,...,Hnn} is the set oh+ 1 polynomials that are orthogonal with respect
to Uy, and hence are an orthonormal basis II%(]R;un), and for eachm andyv,
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lIMpse Hm(V) = \/%Hm(v). The analog of the crucial Hermite—recurrence relation
(4.16) for the Krawtchouk polynomials is

(M+DKnmir = (N—=2V)Kym— (N—m+1)Kym 1.

Rewriting this in terms of the discrete Hermite polynomialse obtains

1/2 1/2
VHn,m(V) =vm+1 (n n m) Hn,m+l(V) + \/m (nr:—i—l) Hn.m—l(V) :
(4.12)
Notice that this reduces to (4.16) in the limit> c (up to the multiplication by the
standard Gaussian).

We are now ready to produce a discrete velocity analog o) {th.8ontinuous
x-space. The phase spacdisx [vo,...,Vn] Where the discrete velocity = (2j —
n)/+/n. Our phase space density at titnis a vectorf(x,t) with n+ 1 non-negative
entriesfp(x,t),..., fa(X,t), such that

Jib (/Tl fi (th)dx> 1

We associate t(x,t) the probability measure on the phase space given by

n
J;fj(xat)a(ijn)/\/ﬁ :
.
The discrete unit Maxwellian (of orde) is the vectom = 27" ((8), .-, (ﬂ)) .
Then the orden discrete analog of (1.3) is the equation

Of (1) +Vaf(x,t) =m (iﬁ(x,t)) —f(x,t), t>0;xeT!, (4.13)
]=

with the (n+1) x (n+ 1) matrixV = diag(vo, ..., Vn). Proceeding as for (4.2) yields
the evolution equation for the spatial modg4), k € Z. Expandind in the discrete
Hermite basi§Hnm(Vj); j =0,...,N}m=0,...n, We obtain for eack the equation

dfk+ik|_1fk: szk, t>0;keZ,

where the vectofi(t) € C™? represents the basis coefficientdgf). As beforel ,
isthe(n+1) x (n+1) matrix L, = diag(0, —1, —1, - --), andL 1 is the symmetric
tridiagonal matrix whose diagonal entries are all zero, amdse superdiagonal
sequence is given by

_ 1/2
Lilmme1 = m+1(nnm> ; m=0,1,....,n—1.
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For example, witm = 4,

01 0 0 0
1 0 32 0 0
Li=|032 0 /3/20
0 0 32 0 1
00 0 1 0

Next we discuss the time decay of the solution to (4.13) tdw#f = m. We
shall focus on the example with order= 4, but the other cases behave similarly.
Computing for the modeks = +1 the eigenvalues ofilL 1 + L, we find two com-
plex pairs and one real eigenvallig= —0.526948302245121 which has the least
negative real part, and hence determines the exponentaydate off.1(t). This
situation for highetk| is similar, but even better, with faster decay. To see this we
write the eigenvalue equation for the matrice&lL 1+ Lo, k€ Z as

ho(A) :=A(A +1)* = —k*(A +1)2(5A +1) —k*(4A +g) = —k?hy(A) —K*ha(A).

The functionhg is negative or{—1,0), —h on (—£,0] and—h4 on (—2,0] (cf. Fig-

ure 1). Fork # 0, the functionk?hy(2 ) + k*ha(A) has exactly one real zera k),

and it is nonnegative ofA (k),0]. For each fixek € Z, the functionk?h; + k*hy is
strictly increasing w.r.tA. Hence, the above eigenvalue equation has exactly one
real zeroAo(k), and it lies in(—g,O]. For each fixedA € [A(k),0], the function
k2hy -+ k*hy is strictly increasing w.r.t. increasirg|. Hence Ag(k) decreases mono-
tonically (w.r.t. |k|) towards—3.

—hya(N)

.'.'. ‘\ ‘\‘ % ho()\)

“ 7h2()\

Fig. 1 Functions appearing in the eigenvalue equationiti ; + L »; solid blue curvehg(A); red
dash-dotted curve:rhy(A); purple dashed linexha(A). (colors only online)

This proves that the 5 velocity model is hypocoercive, astléa the norme
defined in (4.8) (with the transformation matridgsnow corresponding te-Cy :=
FikL1+L2). The sharp decay rate is given by= —0.526948302245121 .
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To establish a uniform-itk-spectral gap was already cumbersome for the case
n=4, and it becomes even more involved for largem the following section we
present a much simpler strategy, at the price of giving uppstess of the decay
rate. But more importantly, that strategy will also be apgtile for the continuous
velocity case, which is represented by a tridiagonal “itdimnatrix”.

4.3 A continuous velocity BGK model

In this subsection we continue our discussion of the spalternogeneous BGK
equation (1.3) or, equivalently, (4.2). This will yield theoof of Theorem 1.
Using the probabilists’ Hermite polynomials,

e O
Hm(v) :=(-1) ez g me % me No, (4.14)

we define the normalized Hermite functions

V2 - 1 Vv
gn(v) = (2rm) PHn(Ve T, and gnv)i= gn(oz).  (419)
They satisfy
[ 8r(V)8v)M7 () v = Gy
and the recurrence relation
Vm(V) = VT [VM+1Gmi1(V) +vVMGm-1(V)] - (4.16)
In the basig{§m}men, Equation (4.2) becomes
fk+ikVTLafc=Lofx, t>0:keZ. (4.17)

Here, the “infinite vector'f(t) € 12(Np) is the representation of the function
fi(vt) € L(R;My1) in the Hermite function basis, and the operatbgsL, are
represented by “infinite matrices” as

0+v10 --

v10+v20 _
Li=| o v2 0 v3 | Lz=diag0 —1,-1,). (4.18)

0 V3.

Next we shall prove the exponential decay of (4.17), usingodified strategy
compared t¢4.2. For the 5 velocity model there, it was possible (with sa@fiort)
to determine the sharp spectral gap of the matrig&s ; + L o, uniform in all modes
k. But since this seems not (easily) possible for the infinitaethsional case in
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(4.17), we shall construct now approximate transformatiatricesPy that yield at
least a (reasonable) lower bound on the spectral gap, arm leenthe decay rate.
For simplicity we set nowl = 1, as the temperature could be “absorbed” into the
parametek by scaling.

LetA be an(n+1) x (n+1) tridiagonal matrix that is zero on the main diagonal.
ThatisAj j =0 unlessj =i+ 1 ori = j — 1. We further suppose thatis real and
symmetric, so tha is characterized by the numbes ..., a, wherea; = Aj_1 j.
LetB =diag(0,—1,...,—1). Finally, fork € Z, consider the matrix-Cy := —ikA +
B.

In the simplest case= 1 witha= 1, we obtain

01 0 O 0 —ik
Az(lo), B:(0_1> and _Ck:(—ik—l>'

For this matrixCy, the transformation matriR, was already computed in (4.5)
(with o = 1). Fork # 0 a simple computation yields

CyPy+ PxCy = Py

so that with this choice dPy, Lyapunov’s method yields exponential decay of the
ODE—sequenc#u;< = —CyUy, k € Z at the optimal rate /2 (cf. §4.1).

We now turn ton > 1. Fork # 0 definePy to be the(n+ 1) x (n+ 1) matrix
1 —ia/k
ia/k 1
to be chosen below, and with the remaining diagonal enteé@sgbl, and all other
entries being 0. Then the eigenvaluedpfare (k+ a)/k, 1 and(k— a)/k, so that
Py is positive definite, and close to the identity for laige
We take—Cy := —ikA + B as above. Then

whose upper left % 2 block is ( , Where 0< a < k is a parameter

CyPy+PxCy = —ik(APx — P¢A) — (BPx+ PyB) ,

and its upper left X 3 block reads

290 —ia/k ao
ia/k2—2a;a 0 ) (4.19)
aa 0 2

The lower right(n—2) x (n— 2) block is 2 times the identity, the off diagonal blocks
are zero. In all of our finite dimensional approximations4d.g8) we havey = 1.
The value ofa; is different for the different discrete velocity modelst busimplify
matters, we only present calculations &ér= v/2, which is the value for the limiting
continuous velocity model.

The determinants of the upper lefk2 and 3x 3 blocks read, respectively,

62(a,k)—a<4— <4+k12>a> and 63(a,k):4a<(a—2)(a—1)—%).
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For eactk, 83(a,k)/a has two positive roots, and is negative between them. Hence
our matrix is positive definite whem lies between zero and the smaller positive root
of &(a,k)/a. This root is least whek = 1, when it has the valué‘zl—\/li7 ~ 0.719.
Hence, by Sylvester’s criterioQ; Py + P« Cy is positive definite for alk # 0 if and
only if o € (0, LT\/ﬁ) ~ (0,0.719). Note that als@,(a,k) > 0 for thesea, k.

Whena is in this range, our % 3 matrix (4.19) has three positive eigenvalues
A1, A2, A3 which we may take to be arranged in increasing order. Then

_V&(a.k) _ 2y/%(ak)  /5(a.k)
\/)Tli \/)\2)\3 = /\2+A3 - 2

since the trace of our matrix is 4. Hence, the least eigeevalwf our 3x 3 matrix
satisfies

A= Al(a,k) > %@(U,k) .

Hence we choose = ay to maximizeds(a, k) between its first two roots. Its max-
imal value,d3(ay, k), depends ork, but it is easily seen to be least foe= 1 with
a1 = 3. Simple computations and estimates then y#ioy, k) > 183(a1,1) =
17/54 for allk.

Since we always take < 1, the largest eigenvalue of the matiix (defined with
o = ay) is no more than 2, uniformly ik. Hence

CyPy+PxCy > é—zll > %Pk (4.20)
uniformly in k. Thus in each Fourier mode, we at least have exponentiaydeta
quadratic type entropy) at the rate/1D8 (by proceeding as in (4.6)).

Since this is also uniform im, we obtain a bound for the continuous velocity
model. Let the infinite matri®y be the positive matrix using the optimal valuecof
in thekth mode, and regarded as a bounded operat&?dﬂ{l) through its action
on Hermite modes. Define the entropy function by

e(f) = kz ((fi(v) = M1(v)), Pi(fic(v) — Ml(V))>L2(M;1> ) (4.21)
=/

We obtain that, for solution$(t) of our BGK equation (1.3) or, equivalently, (4.2),

d 17
_ <
giving exponential relaxation.
7—

The least eigenvalue &%, 1—a /k, is atleast ){ﬁ > 711 uniformly ink, and
hence we have the inequality

1
() 2 Il Ml .
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with 27 = L2(T1 x R; My (v) dv).

The above method to establish exponential decay is sim@ppty but does not
give the sharp decay rate (it is off by a factor of about 9, d&cated by numerical
results). Hence we shall now sketch how to improve on it. Bseerce of the above
method is to use an ansatz for the transformation m&jjxamely to use for its
upper left 2x 2 block the matrix from the 2 velocity case. Using insteadjdar
blocks, will most likely improve the decay rate.

As a second alternative we shall now present an improveniehe@rucial ma-
trix inequality (4.20), but we shall keep the same ansatazHermatrixPy: In the
inequality

CiPx+PxCy—2uP¢ >0 (4.22)

we shall choosg € [0, 1] as large as possible (related to the matrix inequality }3.6)
The upper left 3« 3 block of this matrix on the I.h.s. reads

20 —2u  —ia(1-2u)/k V2a
D:i=|ia(1-2u)/k 2—2a—2u 0 |.
( V2a 0 22#)

We shall first derive strict inequalities qm to obtain the positive definiteness of
this matrix, using Sylvester’s criterion. FroBpo we deduce the first condition
0 < u < a. The determinant of the upper left&2 block reads

2
S (i a,K) = 4(a — W) (1 - o — ) — 5 (1 2)2.

Since the last term increases wilfj, it suffices to consided, for k = 1. Next we
want to establish the positivity of

& (u;a,l)
4(1-a?)

1-5a/4

—_ 2 _
=p-pta—

The zero order term of this quadratic polynomial is positrethe relevanti—
interval (0, =7) (0, ), taking its maximum valug ata = 1. For that limiting
case, the r.h.s. readg — 3)2, and for 0< a < 1, &(u; a,1) always has a zero in
the interval(0, %). This discussion yields the second conditiog x < % related to
a < 3.

Néxt we consider the positivity of the determinant of the empleft 3x 3 block,
which reads

C(Z
K2
For the same reason as before, we only have to consider tbkead. For the
resulting cubic polynomial ip we want to find its largest zero in the interya %]

w.r.t. the parametesr € [0, %]. By numerical inspection we find thaf ~ 0.4684
yields d3(u; ap,1) > 0 for p € [0,0.273796..]. This yields the third condition op

& (H; 0, K) =8(1—p)(a—p)(1—a—p) —4a?(1—a — ) =25 (1— ) (1—2)°.
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and shows that the matrix inequality (4.22) holds with= 0.273796.., uniformly
in k # 0. This somewhat more involved discussion shows that thaydexte can be
improved to 2ip ~ 0.547592. This finishes the proof of Theorem 1.

Remark:To appreciate the above decay rate(sincee( f) is a quadratic functional),
we compare it to a numerical computation of the spectral daheo“infinite ma-
trices” —ikL1 + Lo, k € Z from (4.18). To this end we cut out the upper lefk n
submatrix for large values of For increasing the spectral gap approache6®r3.
Hence our decay rate is off by only a factor of abol8.2f one desired a closer
bound, one could work with B matrix with a larger block, say 8 3, in the upper
left.

4.4 Linearized BGK equation

Next we shall analyze here the linearized BGK equation (Ifdrthe perturbation
h(x,v,t) = f(x,v,t) — Mt (v). We recall the definition of the normalized Hermite
functionsgm(v), m € Ng from (4.15) and give explicit expressions for

vV —T

ﬁ Mt (V) .

Go(V) =Mr(v) and da(v)=

With this notation, (1.12) reads

he (X, v, t) +Vhye (X, v, t) = (Qo(v) - ;égz(v)> o(x,t)+ %GZ(V)T(X,I) —h(x,vt) .

Fourier transforming ix, as in (4.1), each spatial motig(v,t) evolves as

amﬂwm:%m@m+@wéx?9—@m)4m KeZit>0.
(4.23)

Here,oi andty denote the spatial modes of thenomentso andt defined in (1.8).
Next we expandi(-,t) € L(R; My ) in the orthonormal basi&iim(V) }men,:

he(v,t) = % F‘k,m(t)gm(v)> with ﬁk.m: <hk(V)7gm(V)>L2(M;l) )
m=0

and the “infinite vectorfy(t) = (hko(t), k1 (t), ...)T € £3(No) contains all Hermite
coefficients ofh(-,t), for eachk € Z. In particular we have

o= [ cv)Go(VIMF*(v) v = o

and
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Bee = | hgalvim ) dv = 2 (F - ai)

Hence, (4.23) can be written equivalently as
ahi(vt) +ikvhe (v, t) = Go(V)Pio(t) + Go(Whi2(t) —hi(vt), keZ;t>0.
In analogy to (4.17), its Hermite coefficients satisfy
Ahy(t) +ikv/T Lihg(t) = Lahe(t), keZ;t>0, (4.24)
where the operatolls;, L 3 are represented by “infinite matrices” 6t{No) by

0v1IoOo -
vio+v2o0 _
Li=| o v2 0 v3|» Ls=diag0 -1,0,-1,-1,--).

0 V3.

We remark that (4.24) simplifies for the spatial mdde 0. One easily verifies
that the flow of (1.12) preserves (1.9), i®@(t) =0, 1o(t) = 0 vt > 0. Hence, (4.23)
yields

otho(v,t) = —hp(vt), t>0.

Fork # 0, we note that the linearized BGK equation is very similathi® equa-
tion specified in (4.17) and (4.18): The only difference iatth, is replaced by
L3, which has one more zero on the diagonal. Our treatmenkw@TL; —L>
in the previous section suggests the form of the positiveim&; that will pro-
vide our Lyapunov functional in this case. We obtained thérimdy in that case
by replacing four entries around the location of the zerd jwith the entries

1 —ia/k
ia/k 1
model. In the present case, we use two such matrices, onadbrzero.

For parametersr and 3 to be chosen below, we defifg to be the matrix that
has

of , the matrix that provides the optim&} for the two-velocity

1 —ia/k O 0
ia/k 1 0 0
0 0 1 —iB/2k
0 0 ig/2k 1
as its upper-left 4« 4 block, with all other entries being those of the identitye W

define—Cy = —ikL 1 + L 3, where, for the rest of this subsection, we use units in
whichT = 1.

(4.25)

Lemma 4. Choosinga = 3 = 1/3in Py uniformly in|k| € N, we have
C;Pk + PcCy > 2uPy (4.26)

where
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p = 0.0206. (4.27)

Proof. We compute tha€; Py + PcCy is twice the identity matrix whose upper left
5x 5 block is replaced by

20 —ia/k V2a 0 0
ia/k 2—=2a 0 —B/V20
Dyap=|Vv2a 0 V3B —iB/2k B
0 —B/vV2iB/2k2—+/3B 0
o 0 B 0 2

We seek to choose and to make this matrix positive definite.

For 1< j <5, letd;(k, a,B) denote the determinant of the upper Igft j sub-
matrix of Dy 4 g. Fora = 3, the first and third column dd , g have the common
factora. We then compute that

55(k>aaa) = azp5(a’k)a

whereps(a,k) is a cubic polynomial irr with coefficients depending dn

2+4/3
k2

2
+ [34—6\/§+ 24k+1} a’— l4\/§—1+ V3

Ps(ar,k) = 16(v3— 1) — |8v/3+ 16+

a

3
2K k|9

Next, we establish the bound

p5(a7k) > p5(avl)
=16(v/3—1)— (12V/3+18)a + (465—6v3)a’ — (5v/3—1)a® >0 (4.28)

for a € [0, a1] with a1 ~ 0.555 andk| € N. To see the first inequality we consider

ps(a,k) —ps(a,1) = a(1-5)¢(a.k)

with
¢(a.k) :=v3a®— (3(1+ %) +12a +2+4V3.

It satisfiesp (a, 1) > 0 for a € [0, az] with az ~0.765 andd¢ = a /k® for a >0 and
k € N. The r.h.s. of (4.28) is easily seen to be monotone decrgasid evaluating
it at o = 1/3 and simplifying, we obtaips(a,k) > 2.5 for a € [0,1/3]. Finally, we
then have

&(k,a,a) > 2,502

for o € [0,1/3] and allk # 0. A similar but simpler analysis shows that fpe=
1,2,3,4,6;(k,a,a) > 0fora € [0,1/3] and allk # 0.
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Thus, we choose = 3 = 1/3 uniformly ink and this make®y 4 g positive def-
inite. Let{A1,A2,A3,A4,As} be the eigenvalues @, ;33 arranged in increasing
order. We seek a lower bound @n. Note that by the arithmetic-geometric mean
inequality,

35(k,1/3,1/3)
M= oS

A2+ A3+ A1+ As -4
A2A3A4A5

> (1/3.03) (25
05(k,1/3,1/3)

(Tr[Dy1/31/3)*

Since TiDy 4 g] = 6 independent ok, a and B, we finally obtain the bound; >
0.0549, and this means that, uniformlyknz 0,

> 256

CiPx+ PxCy > 0.0549I . (4.29)

A simple computation shows that the eigenvalueBadre 1, 11/6k, and 14+-1/3k.
Hence uniformly irk,

2 4

I <Pe< <l 4.,

3 SPks3 (4.30)
Combining (4.30) with (4.29) yields the result. O

To deduce the first statement of Theorem 2 we consider a golif (1.12), and
for y > 0 the entropy functionad,(f) defined by

&(f) = 3 (1+ k)Y {h(V), Petu(V)) 21 (4.31)
KeZ
with f = Mj + h. Here the matriceBy = | andPy defined in (4.25) fok = 0 are
regarded as bounded operatord 8V ). Then

&dey(f) _— Ez(lJr I2)Y (V) (CiPk + PCi) (V) 24g.3) < —0.04128,(1)

K
) (4.32)
which implies (1.14) and this finishes the proof of Theorei) 2(

We note that the constant in (4.32) is within a factor of 18 &fatvnumerical
calculation shows is best possible. With more work, in patér not making the
simplifying assumptioror = (3 in the definition ofP, and also employing some of
the ideas in the final part of section 4.3, one can still beti#hin this framework.

4.5 Local asymptotic stability for the BGK equation

Fory >0, letHY(T?) be the Sobolev space consisting of the completion of smooth
functions¢ on T in the Hilbertian norm
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1613y =5 (1+K3)|df?
keZ
where ¢y is the kth Fourier coefficient ofg. Let 7, denote the Hilbert space
HY(TY) ® L?(R; M1 1(v) dv), where the inner product ie¢;, is given by

(.90 = Al/ﬂ@T(X’V) [(1—df)yg(x,v)} My L (v)dvdg ,

where &denotes the normalized Lebesgue measuré'on

Then# is simply the weighted spade(T* x R; My %(v) dv) and, for ally > 0,
Q is self-adjoint onsz;,.

Letp, P, o andt be defined in terms of a densifyas in (1.8). For all, ||a|\ﬁy =
(oMr, f — %) . Then by the Cauchy-Schwarz inequality,

2
lollfy < lloMr gl f — 7]

Ay = 0wyl F = - (4.33)
Likewise, | T[4y = (Tv*Mr, f — %) 4, and by the Cauchy-Schwarz inequality,

Tl < ITvMrllg I f = £1Lg = V3T ITllnyllf — £l (4.34)

Fory > 1/2, functions inHY are Hlder continuous, and théY norm controls their
supremum norm. Combining this with the estimates proved@hbwe see that for
all y> 1/2, there is a finite consta@, such that the pressure and density satisfy

z

35)
Using these estimates it is a simple matter to control theeqmpation in (1.10).
Forse [0,1] and(x,v) € T! x R, define

[Olle=[lp—1e <Cy[f = %], and  [[T]lo =[P—Tl[le <Cy|[f 1[4
(.

(1+s0(x))%?2 o R(L450(x)/2(T+sT(x)

Flexv) = 2m(T +st(X))

)

so that the gain term in the linearized BGK equation (1.12)k5(0,x,V). In this
notation,

Rt (X,V) 1=
2 2
My () ~Mr(v) | (5 57 ) Mrvio+ (- 5+ 572 ) Mr9T)
1 Ls
:/0 [dSF(s,x,v)fasF(O,x,v)]ds:/0 /0 [0ZF (r,x,v)] drds.

We compute



34 Franz Achleitner, Anton Arnold, Eric A. Carlen

02F (S,X,V) (4.36)
T-To 30 3 1 VA
_(HS®2{4% (V2+4>92 (V4+ ¢>efﬂw4M%M
with the notationsds := {2 andMeg,(v) := \/% e¥*/(26%) Note that the r.h.s. of

(4.36) is of the order’(a? + 12), which will be related ta7((f — £*)?) due to the
estimates (4.33)-(4.34).

Simple but cumbersome calculations now show thatif 1/2 and|| f — %[,
is sufficiently small, then there exists a finite consfé,r)t depending only oty and
T such that for alk € [0, 1],

|02F (s.x,V)[| . <cyT||f7f|\,fy (4.37)

and hence ~
IRt [l < Cyrllf = £7115; - (4.38)

[The calculations are simplest for non-negative intggém which case the Sobolev
norms can be calculated by differentiation. Ror> 1/2 and sufficiently small
[ f— |, the estimates (4.35) ensure for sl [0,1] the boundedness of @

€ < ||14+50]w , || T +5T||e < o for some fixede > 0 and theL?(R; My (v) dv)-
integrability of

e7V2(1+50(X))/2(T+ST(X)) < e*V2/3T for all x.

In (4.37), higher powers dff — f©[| 55, (arising due to derivatives af andt) can
be absorbed into the constant of the quadratic term.]

Now let f be a solution of the BGK equation (1.6) with constant temjozea
T =1 and defineh(x,v,t) := f(x,v,t) — M7 (v) as in the introduction. Now define
the linearized BGK operator

Qz2h(x,vt) := (g ;) Mt (V)o (x) + (—;I_ + 2\4_22) Mt (V) T(X) — h(x,v,t)

where of course& andt are determined by, and hencé. Then the nonlinear BGK
equation (1.6) becomes

hi (X, v, t) + Vv i (X, v t) = Q2h(X, v, t) + Re (X, t) | t>0, (4.39)

which deviates from the linearized BGK equation (1.12) dnhthe additional term
Rs.

It is now a simple matter to prove local asymptotic stahilitye shall use here
exactly the entropy functiona),(f) defined in (4.31) withf = M; +h. Now assume
thath solves (4.39). To computﬁey(f) we use the inequality (4.32) for the drift
term and forQzh in (4.39), as well ag/Py|| < 3 and (4.38) for the ternR;. This
yields
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d 8.
g &) < -0.0412e,(f) + 2Cyrlhl3,, . (4.40)

(if |[hl[, is small enough) where we have used the facthhatf — f*. Then since

2 4
Sa(D) < Il < Se(f).

which is simply a restatement of (4.30), it is now simple tonpdete the proof of
Theorem 2(b): Estimate (4.40) shows that thereds & 0 so that if the initial data
f1(x,v) satisfieg| f' — f%[|% < dy, then the solutiorf (t) satisfies

g/(f(1) < e VPe(f').

Here we used that the linear decay rate in (4.40) is slighatyel thanziS, to com-
pensate the nonlinear term.

We expect that the strategy from this section can be adapged@ nonlinear
kinetic Fokker-Planck equations; this will be the topic acfubsequent work.
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