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ABSTRACT. This paper is concerned with transparent boundary conditions
(TBCs) for wide angle “parabolic” equations (WAPESs) in the application
to underwater acoustics (assuming cylindrical symmetry). Existing dis-
cretizations of these TBCs introduce slight numerical reflections at this
artificial boundary and also render the overall Crank—Nicolson finite dif-
ference method only conditionally stable. Here, a novel discrete TBC is
derived from the fully discretized whole—space problem that is reflection—
free and yields an unconditionally stable scheme. While we shall assume
a uniform discretization in range, the interior depth discretization (i.e. in
the water column) may be nonuniform, and we shall discuss strategies for
the ‘best exterior discretization’ (i.e. in the sea bottom). The superiority of
the new discrete TBC over existing discretizations is illustrated on several
benchmark problems.

In the literature different WAPEs (or WAPE and the standard “para-
bolic” equation) have been coupled in the water and the sea bottom. We
analyze under which conditions this yields a hybrid model that is conserva-
tive for the acoustic field.
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1. INTRODUCTION

This paper is concerned with a finite difference discretization of wide an-
gle “parabolic” equations. These models appear as one-way approximations
to the Helmholtz equation in cylindrical coordinates with azimuthal symme-
try. In particular we will discuss the discretization of transparent boundary
conditions.

In the past two decades “parabolic” equation (PE) models have been widely
used for wave propagation problems in various application areas, e.g. seismol-
ogy [10, 11], optics and plasma physics (cf. the references in [6]). Here we will
be mainly interested in their application to underwater acoustics, where PEs
have been introduced by Tappert [43]. An account on the vast recent literature
is given in the survey article [28].

In oceanography one wants to calculate the underwater acoustic pressure
p(z,7) emerging from a time-harmonic point source located in the water at
(25,0). Here, 7 > 0 denotes the radial range variable and 0 < z < z, the
depth variable. The water surface is at z = 0, and the sea bottom at z = z,.
In our numerical tests of discrete transparent boundary conditions (in §4) we
will only deal with horizontal bottoms. However, irregular bottom surfaces
and sub—bottom layers can be included by simply extending the range of z.
We denote the local sound speed by ¢(z,7), the density by p(z,r), and the
attenuation by a(z,r) > 0. n(z,r) = ¢ /c(z,r) is the refractive index, with
a reference sound speed ¢, (usually the smallest sound speed in the model).
Then the reference wave number is k, = 27 f/c,, where f denotes the (usually
low) frequency of the emitted sound.

The pressure satisfies the Helmholtz equation

1
0 <r@) —i—p3 (pl 8p) + k2N?p = 0, r >0, (1.1)

ror or 0z 0z
with the complex refractive index
N(z,1r) =n(z,r) +ia(z,r)/k,. (1.2)

In the far field approximation (k,r>>1) the (complex valued) outgoing acoustic
field

P(z,r) = \/Ep(z, r) e~ or (1.3)

satisfies the one—way Helmholtz equation:
¥y = iky(V1—L — 1)1, r> 0. (1.4)
Here, v/1 — L is a pseudo-differential operator, and L the Schrédinger operator
L=~k ?p8.(p~'0.) + V(z,7) (1.5)

with the complex valued “potential” V(z,7) =1 — N?(z,r).

The evolution equation (1.4) is much easier to solve numerically than the
elliptic Helmholtz equation (1.1). Hence, (1.4) forms the basis for all standard
linear models in underwater acoustics (normal mode, ray representation, par-
abolic equation) [2, 43]. Strictly speaking, (1.4) is only valid for horizontally
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stratified oceans, i.e. for range—independent parameters ¢, p, and «. In prac-
tice, however, it is still used in situations with weak range dependence, and
backscatter is neglected.

“Parabolic” approximations of (1.4) consist in formally approximating the
pseudo—differential operator /1 — L by rational functions of L, which yields
a PDE that is easier to discretize than the pseudo—differential equation (1.4).
For a detailed description and motivation of this procedure we refer to [12, 20,
21, 28, 43, 44]. The linear approximation of v/1 — A by 1 — % gives the narrow
angle or standard “parabolic” equation (SPE) of Tappert [43]

UVp = — % Ly, r > 0. (1.6)
This Schrodinger equation is a reasonable description of waves with a propa-
gation direction within about 15° of the horizontal. Rational approximations
of the form

1 Po — P
1- ANz f(A\)=——"— 1.7
(-2} ) = 22 %
with real p,, p;, ¢, yield the wide angle “parabolic” equations (WAPE)
. - 1L
by = ike <% - 1) b, 1> 0. (1.8)
In the sequel we will repeatedly require the condition
f’(O) = poq: — p: < 0. (19)

1

With the choice p, = 1, p, = %, G = i ((1,1)-Padé approximant of (1 — \)2)
one obtains the WAPE of Claerbout [10]. In [21] Greene determines these
coefficients by minimizing the approximation error of (1 —\)? over suitable A-
intervals. These WAPE models furnish a much better description of the wave
propagation up to angles of about 40°. Also, higher order analogues of (1.7),
(1.8) [14, 23] and split-step Padé algorithms [15] have been successfully used
for acoustic problems. While we will restrict ourselves here to the WAPE (1.8),
we remark that the construction of discrete transparent boundary conditions
(see §3) could be generalized to higher order PEs and even 3D-problems.

In this article we shall focus on boundary conditions (BC) for the WAPE
(1.8). At the water surface one usually employs a Dirichlet (“pressure release”)
BC: ¢(z = 0,7) = 0. At the sea bottom the wave propagation in water has
to be coupled to the wave propagation in the sediments of the bottom. The
bottom will be modeled as the homogeneous half-space region z > z, with
constant parameters ¢, pp, and ap. Throughout most of this paper we will
use a fluid model for the bottom by assuming that (1.8) also holds for z > 2,
possibly with a different rational approximation (1.7) (subject to the coupling
condition (2.23)). Only at the end of §2 we will comment on the coupling of
scalar and elastic “parabolic” models.

In practical simulations one is only interested in the acoustic field ¢ (z,r) in
the water, i.e. for 0 < z < z,. While the physical problem is posed on the un-

bounded z—interval (0, 00), one wishes to restrict the computational domain in
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the z—direction by introducing an artificial boundary at or below the sea bot-
tom. This artificial BC should of course change the model as little as possible.
Until recently, the standard strategy was to introduce rather thick absorbing
layers below the sea bottom and then to limit the z—range by again imposing
a Dirichlet BC [12, 14, 29, 34, 44]. With a carefully designed absorption pro-
file and layer thickness this strategy has been very successful. But without a
comparison to the exact half-space solution it is hard to estimate how much
an absorbing layer modifies the original problem. Also, absorbing layers in-
crease the computational costs, for SPE— or WAPE—-simulations typically by a
factor around 2 [28, 45]. However, in simulations without attenuation (“false
absorbing layer method” [28, 45]) or over an elastic sea bottom [14], much
thicker absorbing layers have been used to ensure accuracy and, respectively,
numerical stability.

In [35] and [37] Papadakis derived impedance BCs or transparent boundary
conditions (TBC) for the SPE and the WAPE, which completely solves the
problem of restricting the z—domain without changing the physical model:
complementing the WAPE (1.8) with a TBC at z, allows to recover — on
the finite computational domain (0, z,) — the exact half-space solution on
0 < z < 0o. As the SPE is a Schrodinger equation, similar strategies have
been developed independently for quantum mechanical applications [5, 7, 24].

Towards the end of this introduction we shall now turn to the main mo-
tivation of this paper. While TBCs fully solve the problem of cutting off
the z—domain for the analytical equation, their numerical discretization is far
from trivial. Indeed, all available discretizations are less accurate than the
discretized half-space problem and they render the overall numerical scheme
only conditionally stable [7, 33, 36, 45]. The object of this paper is to con-
struct discrete transparent boundary conditions (DTBC) for a Crank—Nicolson
finite difference discretization of the WAPE such that the overall scheme is
unconditionally stable and as accurate as the discretized half—space problem.

The paper is organized as follows: In §2 we review the TBCs for the WAPE
and discuss the coupling of the WAPE to the SPE and the elastic PE. In
§3 discrete TBCs are derived and analyzed; their superiority over existing
discretizations is illustrated in the numerical tests of §4.

2. TRANSPARENT BOUNDARY CONDITIONS AND MODEL COUPLING

In this Section we shall first discuss the well-posedness of the evolution
problem for the WAPE in the critical non—dissipative case, i.e. for a = 0:

U, = iko[f(L) — 1], z2>0, r>0, (2.1)

subject to the BC (0, r) = 0, and with the rational function f given in (1.7).
For simplicity of the analysis we only consider the range—independent situation;
the functional analytic proof of this theorem is deferred to the Appendix.

Theorem 1. Assume that the refractive index n(z), the density p(z) > 0, and

p 1(2) are bounded for = > 0. Then, the WAPE has a unique solution for all

initial data in the weighted L?-space L*(IRY; p~tdz) if and only if the pole of
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f(A) at A= q;' is not an eigenvalue of the operator L with Dirichlet BCs at
z=0.

In applications of underwater acoustics the sound speed c¢(z) is typically
larger in the sea bottom than in the water. Therefore V'(2) forms a “potential
well” in the water region 0 < 2 < z,, which typically gives rise to bound states
of L that represent the propagating modes of (1.4) and (1.8). All of the corre-
sponding eigenvalues satisfy 0 < \; <V, =1 — ¢2/cZ < 1, if ¢, = min,~q ¢(2).

As ¢, is much smaller than 1 in all practical simulations (i in the WAPE of

Claerbout; also cf. [21]), X usually lies in [V}, 00), the continuous spectrum of
L. Theorem 1 then guarantees the unique solvability of the evolution equation
(2.1) for any initial data. Let us compare the situation at hand (i.e. the WAPE
on the original unbounded interval — and later also the WAPE with a TBC)
to the WAPE restricted to the z—interval [0, zp,q,] With a homogeneous Robin
BC at 2,4 as a simple model for an absorbing layer: there, L has a pure
eigenvalue spectrum which inhibits the solvability of (2.1) in several cases of
practical relevance [3].

Now we turn to the matching conditions and later the TBCs at the water—
bottom interface (z = z). As the density is typically discontinuous there, one
requires continuity of the pressure and the normal particle velocity:

I/J(be,T) = ’QZ)(Z(ﬁ»,T‘), (22&)
%(Zb—ﬂ") _ T/JZ(ZH,T), (22b)
Pw Pb

where p,, = p(zp—, ) is the water density just above the bottom and p, denotes
the constant density of the bottom.

With these matching conditions we shall now derive an estimate for the L
decay of solutions to the WAPE (1.8), z > 0. We assume p = p(z) and apply
the operator 1 — ¢, L to (1.8):

1 —aqV +qk, ?pd.(p'0:)]¢r
= ik, [po —1- (pl - Q1)V + (pl - Q1)ko_2p az(p_laz)]’@b (23)

Multiplying (2.3) by 1p~!, integrating by parts on 0 < z < 2, and taking the
real part gives

0, P pld
/OIT/J| pdz
= 2(p, — ¢.)ko { /0 Im [V]|[y[* p~'dz — k, 2py," Im [1,)] \}

% (2.4)
ra{ [ RelViorof — 21m V] im.0)p

2p _
4,20, [ 10z - 20,7, Re (1] \z:z,,_} -
0
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Analogously, multiplying (2.3) by ¢,p~!, and taking the imaginary part we get
Zb 9
=100, [0l 7'
0

2y _
— =20k, [ VIl e 200k T [0 ]|
0

z=zp—
2 ) ) (2.5)
+ o= { [ (Re[VIoL o + 21 V] I [0, 8))p s
0
2p _
+k028r/ |’¢)z|2 pildz - 2k;2p;1 Im ['@Z)zwr] ‘z:zb—} .
0
After an easy algebraic manipulation we obtain from (2.4), (2.5)
2p
o [ ultp iz
0
RN P 1,1 -
- —201/ a2 8,&/)‘ pldz — CkT ot Im [a,ma,y;] . (26)
0 R=Zp—
with
2p, — q,)? - '
S e [ U S (PP
D1 — Do, P —

In the same way a similar equation can be derived for the bottom region z > z:

o [ 1ol p s
2p

L2 J—
— 2Cha, 2 am‘ p~ldz + Cik;lpr! Im [a,zpzarzp] (2.7)
Cp 2 z=zp+
Adding the two above equations with (2.2) gives
o0 -2
ol (., m)|)? = —201/ ac—co 8,«1,/)‘ p~tdz (2.8)
0

for the weighted L?-norm

[ m)* = /Uoo [ (2,1 p7! (2) d. (2.9)

In the dissipation—free case (a = 0) ||¢(.,r)|| is conserved and for o > 0 and
Po¢y — P < 0 it decays. The discrete analogue of this “energy”-conservation
(or —decay for @ > 0) will be the main ingredient for showing unconditional
stability of the finite difference scheme in §3.

Now we shall review the transparent bottom boundary condition for the
SPE and sketch the derivation of the TBC for the WAPE. We assume that
the initial data ¢ = (2, 0), which models a point source located at (zs,0), is
supported in the interior domain 0 < z < z,. Also, let the bottom region be
homogenous, let i.e. all physical parameters be constant for z > z,. The basic
idea of the derivation is to explicitly solve the equation in the bottom region,

which is the exterior of the computational domain (0, z;). The TBC for the
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SPE (or Schrédinger equation) was derived in [5, 7, 24, 33, 35, 37] for various
application fields:

D(zpy1) = —(2mhy) 2 €T 22 | (2 — 1) €72 d, (2.10)
Pw Jo

with b = ko(NZ—1)/2. This BC is nonlocal in the range variable r and involves
a mildly singular convolution kernel. Equivalently, it can be written as

2ko % -z b pw / ib 1
A20,7) = — | — ,T)e T (r—7)"2dr, (2.11
bulenr) == (B) emiar 2 8 [y ny e -y, @

and the r.h.s. can be expressed formally as a fractional (3) derivative [5, 7, 9]:
V. (2,7) = —/2koe” 1 " p—w@l,/Q [¢(z,7) e™7]. (2.12)
Pb

In [9] this square root operator is approximated by rational functions which
leads to a hierarchy of highly absorbing (but not any more perfectly transpar-
ent) BCs for the SPE. By introducing auxiliary boundary variables these BCs
can be expressed through local-in—r operators. Hence, this allows for a “local”
(2-level in r) discretization scheme [16]. This scheme, however, introduces nu-
merical reflections at the artificial boundary, whose amplitude depends on the
chosen approximation order of the above square root operator.

In order to derive the TBC for the WAPE we consider (2.3) in the bottom
region:

(0 + @ kg 202y = i[vp + (pr—aq.) k) 02] 0, z > zp, (2.13)
with
Sp=1—q(1-N2), v, = ko[ o — 1 — (pl—ql)(l—NbQ)].
After a Laplace transformation of (2.13) in 7 we get
(@15 — i(pl—ql)ko]dszz(z, s) = k2(ivy — 6y5)0(z, 3). (2.14)

Since its solution has to decay as z — oo we obtain

iUb — 51,8

(2, 5) = P(z+, 5) exp {—ko J\r/qls B pa—— (z — zb)} , 2>z, (2.15)

and with the matching conditions (2.2) this gives

g Pwg| =0 s
V(2 5) ko \/qls B P P(zp—, $). (2.16)

Here, {/ denotes the branch of the square root with a nonnegative real part.
An inverse Laplace transformation [8] yields the TBC at the bottom for the
WAPE:

w(zba T) = _“7 & wz(zba T)

w

#52 [ oo = 1) 0 o) + (00 dr, (27
w J0
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n:kiJr&, /Bz_pl_poqlﬁ gzpl_ql

o V b 2q Op q,
where Jy, J; denote the Bessel functions of order 0 and 1, respectively. This
is a slight generalization of the TBC derived in [37] where p, was equal to 1.
Equivalently, (2.17) can be written as

ko,

wz(zba T) = inilp_w w(zba T)
Po

+ ﬁn_lp—w /7" 1/)(21,, r— 7') 07 ehT [JO(BT) - iJl(ﬁT)] dr. (2-18)
Po Jo

Both TBCs are non-local in r; in range marching algorithms they thus require
storing the bottom boundary data of all previous range levels.

We remark that the asymptotic behaviour (for r — oo) of the convolution
kernel in the TBC (2.11) is O(r=2), which can be seen after an integration
by parts. Using the asymptotic behaviour of the Bessel functions (see (3.5))
one finds that the convolution kernel of (2.18) also decays like O (r~3/2).

At the end of this Section we shall now briefly comment on coupled models
for underwater acoustics, as proposed in [36, 37]. In [37] the WAPE for the
ocean (0 < z < z) is coupled to the SPE for the sea bottom (z > z,). In
fact, these models are coupled via a TBC corresponding to the SPE, but this
is equivalent to the half-space problem. Here we want to point out a mathe-
matical ambiguity of this coupling that may strongly influence the numerical
stability of the discretization scheme. To this end we consider this model
coupling in the case of constant sound speed and density, which is rather un-
realistic, but it illustrates the situation.

Let us first review the WAPE (2.1) with the Schrodinger operator L =
—k,20%. When discretizing (2.1) one usually applies the operator 1 — ¢, L to
(2.1) which gives the following PDE of “Sobolev type” [27]

[(1 - Q1L)1/)r = 1k, [po —1- (p1 - ql)L]d). (2.19)

Since the operators in the numerator and denominator of (1.8) commute (even
for non—constant ¢ and p) this step is mathematically rigorous, and (2.19) is
easy to discretize (see §3).

Disregarding for the moment the nonlocality of the involved pseudo—differen-

tial operator, one would formally want to write the evolution equation for the
coupled model (WAPE and SPE) as

Uy = ik, At (2.20)
with b
Do +p1k0_ az )
. a—) , 0 <z < 2,
Ay = ( ok )Y T (22m)
0 2
9 8Zw, Z > Zp. (221b)

However, the right hand side of (2.20) is not well-defined, due to the non—
locality of the pseudo—differential operator in (2.21a). Also, its reformula-

tion as in (2.19) is not any longer justified in the coupled case. Even in the
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dissipation—free case it would result in a non—conservative evolution equation
and hence in a non—conservative numerical scheme (nevertheless this strategy
is used in [37]). This is illustrated in Example 3 of §4. Using more involved
pseudo—differential operators it is possible to find a correct and conservative
interpretation of (2.20), (2.21) (for mathematical details see Appendix B).
However, its discretization would be very difficult.

From the above we conclude that it is not advisable to couple the WAPE
and the SPE numerically. As an alternative we shall now analyze couplings
of WAPEs with different parameters p,, p,, ¢, that can be reformulated as a
PDE, like in (2.19). The coupled model

¢ = ik, <p°§z)_;f(°;§?L - 1) ¥ (2.22)

is well-defined and can be transformed to (2.19) if the numerator and denom-
inator in (2.22) commute. Under the condition

pi(2)/0:(2) =: p = const (2.23)

we can rewrite the pseudo—differential operator in (2.22) as

Po(2) — pi(2)L _ M[T(Z) — /FQU(Z)L] —1
1—q(2)L 7(z) — p20(z)L

(2.24)
with
-1 9 -1

T(2) = [n=po(2)] T, ol(2) = pi(2)[pi(2) = po(2)an(2)] (2.25)
Here the numerator and denominator commute, and hence (2.22) can be writ-
ten in the form of (2.19). The resulting evolution equation is conservative in
L*(IR*; (0p) 'dz) and it allows for a conservative and unconditionally stable
discretization (see §3 and Example 3 in §4).

If the parameters p,, p;, ¢, are fixed in one medium, condition (2.23) still
leaves two free parameters to choose a different rational approximation model
of (1 — A)z for the second medium (cp. [21]). Hence, one can in fact obtain a
better approximation in the second medium than with the originally intended
“parabolic approximation”.

Finally we add a small remark on the coupling of the SPE with an elastic
parabolic equation (EPE) for the sea bottom [13, 22, 47]. In [36, 37] a TBC
for this coupling was derived. It reads for the Laplace transformed wave field:

p 1 1 "
pw ]{;0]\[4 \+/M 8
(2M,(s) + N?)* — 43/ M, (s) /M (s) + N2)| ¥ (2,5), (2:26)

with the notation

’Q/A)(Zb, S) = -

2 21
My(s)=1—-N2— s My(s)=1—N?— s, (2.27)
ky kq
Here, N, = n, + ia,/k, and N; = ng + ia;/k, denote the complex refractive
indices for the compressional and shear waves in the bottom (cp. (1.2)). In a
9



tedious calculation this BC can indeed be inverse Laplace transformed (using
[8]) and it reads:

T/J(Zbﬂ“):
ol (2,7 — T) €97 g(7) dr — 2i ' (o — )T s dr| | (2.28
[/0 V,(zp,r — 1) e“Tg(T)dT zgo/o Vor (25,7 — T) 7T T ( )

with

Py 2 2 =, k k
o:p_m[ w=Sz o), o= Rz,

o(7) = =31 = )7 E i (BN = N2 - aNze)

k2 _1 1
o (Ny = NyN; + NS + Ny = N§)772 = O(777)).

While this inverse transformation was carried out numerically in [36, 37], our
analytical TBC may simplify the discretization of this coupled model. DTBCs
for the SPE-EPE coupling (in the spirit of §3) will be the topic of a subsequent

paper.

3. DISCRETE TRANSPARENT BOUNDARY CONDITIONS

In this Section we shall discuss how to discretize the TBCs (2.10), (2.17)
in conjunction with a Crank-Nicolson finite difference scheme for the SPE
and the WAPE. Most of the time we shall only consider uniform grids in z
and r. While a uniform range discretization is crucial for our construction of
discrete TBCs, this construction is independent of the (possibly nonuniform)
z—discretization on the interior domain.

For simplicity we first consider the uniform grid z; = jh, r, = nk (h = Az,
k = Ar) and the approximation ¢7 ~ 1(z;,7,). The discretized WAPE (2.3)
then reads:

n—l—% — — n
1 —q.V; ?+aqk, ZPjDO%(Pj IDO%)]DI:@Z)J'
=1k, [po —1- (pl - Q1)Vj " + (pl - Q1)ko ZIOJ'DO%('O]' IDO%)] % ’
(3.1)
1
with an+2 =V (2, rn+%) and the usual difference operators
n+1 n o=yt
D*W?:% — ¥ Ownzw
LR ko 5 h '

It is well known that this scheme is second order in A and k and uncon-

ditionally stable [3]. Proceeding similarly to the derivation of (2.8) one can
10



show

2

1 i 1
R N S

P 1 Py

(3.2)

"2
Y % =i Yo {1

JEZ JEZL

with C; = 2(p,—q,)?/(p.—poq,)- Hence, the scheme (3.1) preserves the discrete
weighted L?-norm in the dissipation—free case (V real). This also holds when
using a homogeneous Dirichlet BC at j = 0.

In the literature three different strategies have been proposed to discretize
TBCs, mostly, however, just for the Schrédinger equation: In [45] Thomson
and Mayfield used the following discretized TBC' for the SPE:

h n—1 )
n __ n, — — n_Bl n—-m __ n:m ém, 33
@/)J 77/{7 1 23165% mX:l( 7 77/{] 1) ( )
with
., sin(3 ibmbk
B= (k) beit P pro s g e

1 ) m— -
Pu 20k 2\/m+1

On the fully discrete level this BC is not perfectly transparent any more and it
may also yield an unstable numerical scheme. In analogy to the analytic TBC
(2.10) it requires the boundary data from the whole “past range” [0, 7;,—1].

In the semi—discrete approach of Schmidt and Deuflhard [39] a TBC is de-
rived for the semi-discretized (in ) SPE, which also applies for nonuniform r—
discretizations and range-dependent coefficients in the exterior domain. This
TBC yields an unconditionally stable method (in conjunction with an inte-
rior finite element scheme) [40]. In [40] this approach is also applied to uni-
form exterior z—discretizations, and one then recovers — through a different
derivation — the discrete TBC from [5]. While the semi-discrete approach
still exhibits small residual reflections at the artificial boundary, the discrete
TBC is reflection—free [40] (at the end of this Section we shall return to this
comparison when discussing the ‘best exterior discretization’). In the recent
article [41] the methods of [40] are extended to nonuniform r—discretizations
and range—-dependent potentials.

In [5] we constructed a discrete TBC for the fully discretized Schrédinger
equation and the resulting scheme elliminates any numerical reflections. The
same strategy was used in [19] for advection diffusion equations and in [17] for
the wave equation in frequency domain.

Here we shall generalize the latter approach (i.e. fully DTBC) to the WAPE

and compare it numerically to the discretized TBC. To this end we use a
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discretization of the TBC (2.17) for the WAPE that is analogous to (3.3):

/ a2, 7o — ) €7 [o(B7) + iy (BT)] dr
—1

_ Z /rm+1 Zb, r— ) 0T [j;)(ﬁ/]—) + Zi(BT)] dr

n—1 w . Tm+1
~ [y (Brms) + i1 (Brmys)] / 07 g

m=0

with the damped Bessel functions J,(z) := e%.J,(z), z € €. This yields the
following discretized TBC:

n—1
n n ih Pw n-m n—-m\ )
V=Y =— _7/)J Z( J T Yia )Zm, (3-4)
m=0
with
, i sin(=0k ~ iom o~
B' =i 629,9%, b = €” k[ 0(BT 1 )+7,J1(Brm+%)].

2

In far field simulations one has to evaluate .J,(z) for large complex z, when
numerically calculating these convolution coefficients 0, This, however, is a
rather delicate problem, and many standard software routines are not able to
evaluate J,(z) for large complex z. This is due to the exponential growth of
the Bessel functions for fixed v and |z| — oo (see [1]):

J,(z) = (%)é {cos (z — z/g — Z) +elm oz )} , —m<argz <T.
(3.5)

For this reason we used a subroutine of Amos [4] to evaluate the damped Bessel
functions J,(z), Im z > 0 (note that Im § > 0 for the standard parameter
choices in (1.7): p;, — poq, > 0 and ¢, > 0).

In [33] Mayfield showed for the attenuation—free case that the discretized
TBC for the SPE (3.3) destroys the unconditional stability of the underly-
ing Crank-Nicolson scheme and one can expect a similar behaviour for the
WAPE. These existing discretizations also induce numerical reflections at the
boundary, particularly when using coarse grids. Hence, the existing discretized
TBC [33, 45] exhibits both stability problems and reduced accuracy, which
may require the usage of unnecessarily fine grids.

Instead of using an ad-hoc discretization of the analytic TBCs like (3.3) or
(3.4) we will construct discrete TBCs for the fully discretized half-space prob-
lem, as done in [5]. Our new strategy solves both problems of the discretized
TBC at no additional computational costs. With our DTBC the numerical
solution on the computational domain 0 < 7 < J exactly equals the dis-
crete half-space solution (on j € INy) restricted to the computational domain
0 < j < J. Therefore, our overall scheme inherits the unconditional stability

of the half-space solution that is implied by the discrete L?>-estimate (3.2).
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To derive the DTBC we will now mimic the derivation of the analytic TBCs
from §2 on a discrete level. For the initial data we assume ¢7 =0, j > J —1
and solve the discrete exterior problem in the bottom region, i.e. the Crank—
Nicolson finite difference scheme (3.1) for j > .J:

[Roy + qAR] (] = 7)) = i[ Ry + A3 ] (477 + ), (3.6)
with
2k, h? k q
G=1-q¢(1-N}), R=—""T—— qg=—-——"—k*
b ql( b) pl - ql k q 2p1 _ ql 0
k 2
Hbzgko[ o—1—(pi—q)(1- N)]

where Ajo? =7 =247 +17 |, and R is proportional to the parabolic mesh
ratio. By using the Z— transform

Z{U} = dy(= Zw“ . 2€C 2> 1, (3.7)

(3.6) is transformed to

[z +1+ig(z — 1)]A§L@@J(z) = —iR[6(z — 1) — iry(z + 1)}1/;](2) (3.8)
The solution of the resulting second order difference equation takes the form
Di(z) = vi(2), j > J, where v,(2) solves
iRO(2 — 1) —irp(2 + 1)
2 2+ 1+ig(z—1)

For the decreasing mode (as j — o0) we require |v,(z)| < 1. We obtain the
Z—transformed DTBC as

Vi (2) = v (2) Wy (2), (3.10)
and in a tedious calculation this can be inverse transformed explicitly. The
DTBC for the SPE and the WAPE then reads:

(L+iq) Y, =" L, = Z e > 1, (3.11)

2 —211—

v+1=0. (3.9)

with the convolution coefficients ¢, := (1 + Zq) “{v(2)} given by

b= [L+ig+ 5 (7 —io)e” )50 — L (- 1y

2
. Sl (3.12)
= ({Qnlp) + € A PQur (1) +we > (=) Q1) },
m=0
E F H?
=R =R A= (/= = =
Y by o Kb, Ga M T EG? w |E|7
1—1 ) 1.
e=argi . p=agh, (=gl

E=(y+io)[y—4q+i(oc+4)], F=v(y—4q) +o(o+4),
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G:(fy—ia)[fy—4q—i(a+4)], H:’Y+i0+(’y—i0)6_if.

In (3.12) 62 denotes the Kronecker symbol and @, (1) := A" P, (u) the damped
Legendre polynomials (Qo = 1, @_1 = 0). In the non—dissipative case (a, = 0)
we have |\| = 1, p € [—1,1], and hence |P,(u)| < 1. In the dissipative case
ap > 0 we have |A| > 1, p becomes complex and |P, ()| typically grows with n.
In order to evaluate /,, in a numerically stable fashion it is therefore necessary
to use the damped polynomials @, (x) in (3.12).

The convolution coefficients (3.12) behave asymptotically as

by & —iH(=1)"e™, n — oo, (3.13)
which may lead to subtractive cancellation in (3.11) (note that 17 ~ ¢7*" in

a reasonable discretization). Therefore we use the following numerically more
stable fashion of the DTBC in the implementation:

n—1
(L+iq) v, — Loy = -1 —ig) P11 + > U s, (3.14)
m=1

with s, := ¢, + €%¢,,_1, n > 1. The coefficients s,, are calculated as

Qn(p) = X 2Qn_2(p)
2n—1 )

sn = [(1+ig)e” + %(7 —i0)]6r 4+ ¢ (3.15)

Alternatively, they can be calculated directly with the recurrence formula

_2n—3 n—3._,

A Sp9, n >4, (3.16)

-1
Sn /LA Sp—1 —

n
once si, Sz, s3 are computed from (3.15). Using asymptotic properties of the
Legendre polynomials [42] one finds s, = O(n~%2), n — oo which agrees with
the decay of the convolution kernel in the differential TBCs (2.10), (2.17).

This decay of the s, motivates considering also a simplified version of the
DTBC (3.14) with the convolution coefficients being cut off beyond an index
M. This means that only the “recent past” (i.e. M range levels) is taken into
account in the convolution in (3.14):

n—1
(L+iq) gy — ot = —(1—ig) Y52 + > T 5, . (3.17)

m=n—M

This, of course, reduces the perfect accuracy of the DTBC (3.14), but it is
numerically cheaper while still yielding reasonable results for moderate values
of M. We remark that the resulting scheme does not conserve the discrete L
norm (cp. (3.2)), and hence the numerically stability of the simplified DTBC
is not yet known.

So far we did not consider the (typical) density jump at the sea bottom in
the DTBC (3.11). In the following we review two possible discretizations of
the water-bottom interface. For the usual grid z;, j € INy with Jh = z, the

discontinuity of p is located at the grid point z;. In this case it is a standard
14



practice [3, 34] to use (3.1) with

Puws J<J,
pi=9 ok, j=1, (3.18)
Pb; .] > J.

As an alternative one may use an offset grid, i.e. Z; = (j+3)h, 1,/;;1 ~p(Z,n),
j = —1(1)J, where the water-bottom interface with the density jump lies
between the grid points 7 = J — 1 and J. For discretizing the matching
conditions in this case one wants to find suitable approximations for ¢) and p
at the interface z,, ¥ ~ ¢(2,) and pesr = p(zp), such that both sides of the
discretized second matching condition (2.2b)

Ly -1 Yovia are equal to v ¢J_1. (3.19)
pw  h/2 py  h/2 Peff h
This approach results in an effective density pe;r = (pw + pb)/2 (based on a
different derivation this was also used in [13]). In numerical tests we found that
the offset grid with the above choice of p.ss produces slightly better results
that have less Gibbs’ oscillations at the discontinuity of ¢, at z,. This may be
understood by the fact that (3.18) requires a higher order derivation (using the
evolution equation) than our derivation (3.19) (see also [13, 29, 34]). Because
of the discontinuity of 1, the higher order derivation yields (slightly) poorer
results. Therefore we choose the offset grid for the implementation of the
DTBC. At the surface we use instead of ¢ff = 0 the offset BC 1/)0 = —1/)”
Finally it remains to reformulate the DTBC (3.11) such that the density
jump is taken into account. We rewrite the discretization of the second depth
derivative at j = J from (3.1):

") (g — ). (3.20)

oy Dy (o7 DRIS)| = A3+ (1 -

Comparing the r.h.s. of (3.20) to (3.6) we observe that only one additional
term appears, and instead of (3.8) we get

< i (5()(2 — 1) — ilib(z —+ 1) 2 P 2 2
Grale) = |1 - i MEZH BB ) —

(3.21)

Using J)JH(Z) = v, (2) 1/3J(z), where v,(z) denotes the solution of (3.9), and
considering the fact that v,(2) + v, '(2) is equal to the term in the squared
brackets in (3.21) we obtain the Z—transformed DTBC:

2

() =,y (2) = ”;ffwm %uﬁ(zm(z). (3.22)
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Hence, the DTBC including the density jump reads

(1+iq) L gn |+ [(1+ig) (1 — 22) — 5]
Peff Peff

n—1
. Pb Tp_1 . Pb Tn—1 m
= —(L—ig) — 57, — (1 —ig)(1 — — +y s, (3.23)
Peff J-1 ( peff) J mz:l J

with the convolution coefficients s, given by (3.15).

At the end of this Section we now address the question of nonuniform
depth discretizations. In the derivation of the DTBC we needed a uniform
z—discretization for the exterior problem on z > z, i.e. 7 > J — 1. For the
interior problem, however, a nonuniform discretization (even adaptive in r)
may be used, and this would not change our DTBC (3.23). For any given
interior z—discretization and a uniform grid spacing hy in the exterior domain,
the DTBC will always yield, on the interior domain, the same solution as the
corresponding discrete half-space solution.

This raises a natural question: given an interior (possibly nonuniform) z—
discretization, what is the best uniform discretization of the exterior domain?
To analyze this question we first consider the three types of errors that are
relevant here: Firstly, the error associated with the given interior discretization
does not depend on the choice of h;. In order to avoid strong reflections due to
the nonuniform grid we will assume that the interior grid spacing h; 1= 2z;—z;_1
“varies slowly with j” and can be represented as h; = h(z;) with a “smooth”
function h(z). To the authors’ knowledge, the reflections in irregular grids
have not yet been theoretically analyzed for the Schrodinger equation, but
very similar effects appear in hyperbolic and parabolic equations [46, 32]. In
numerical tests, however, one can easily verify that discontinuities of h(z)
would introduce spurious numerical reflections of an incident wave (cp. [46] and
references therein). Such reflections can be largely reduced by “smoothing”
such a discontinuity of h(z) (cf. Example 4 of §4).

Secondly, the discrete BC at z, may cause outgoing waves to be partially
reflected back into the computational domain, and these reflections strongly
depend on hy,.

Finally, for the discretization error of the (uniformly discretized) exterior
domain we have to distinguish between traveling waves and evanescent waves.
In the first case the discretization error can be interpreted as a modification to
the dispersion relation for the outgoing waves (incoming waves are not present
in the exterior domain). But the accuracy of their propagation speed is irrel-
evant, as long as we are only interested in the solution in the interior domain.
Hence, the exterior discretization error can be disregarded for outgoing trav-
eling waves. The discretization error of evanescent waves, however, influences
the interior solution.

Since our DTBC is fully equivalent to a discrete half-space problem, the
above discussion of the three error types can be completly reduced to the
problem of internal grid reflections for the SPE or the WAPE. In the con-
tinuous limit (h, — 0) of the exterior discretization, this also holds for the

semi—discrete approach of [39, 40] for the Schrédinger equation. Following the
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above discussion we can now give the best exterior discretization in the ‘trav-
eling wave regime’: the uniform exterior grid spacing h, = h(z,) generates a
completely reflection—free BC and the uniformity of the exterior grid ensures
that the outgoing waves will never be reflected back. Their inaccurate resolu-
tion in the exterior domain only causes inaccurate wave speeds, but this does
not affect the interior solution.

This behaviour is numerically verified in the simulations of §5 in [40], where
a uniformly spaced grid was compared to the semi—discrete approach for the
exterior domain. There, a Schrodinger equation with a constant potential
is considered, and hence the initial Gaussian wave packet consists only of
traveling wave modes in the exterior domain.

In the ‘evanescent wave regime’, however, the picture is not that simple,
and it is not known yet whether there exists a exists a unique ‘best exterior
discretization’. Our simulations of §4 indicate that it may indeed be advan-
tageous to use a DTBC that corresponds to a finer exterior discretization, as
long as the interior and exterior grid spacings are gradually matched to each
other.

4. NUMERICAL EXAMPLES

In the first two examples of this Section we shall consider the SPE and the
WAPE for comparing the numerical result from using our new discrete TBC
to the solution using either the discretized TBC of Thomson and Mayfield [45]
or an absorbing layer. Due to its construction, our DTBC yields exactly (up
to round-off errors) the numerical half-space solution restricted to the com-
putational interval [0, 2,]. The simulation with discretized TBCs requires the
same numerical effort. However, their solution may (on coarse grids) strongly
deviate from the half-space solution.

In each example we used the Gaussian beam from [28] as initial data. Below
we present the transmission loss —10log,, |p|2, where the acoustic pressure p
is calculated from (1.3).

Example 1. This is a well-known benchmark problem from the literature
[28, 37, 45]. In this example the ocean region (0 < z < 240m) with the
uniform density p, = 1.0gem™3 is modeled by the SPE (1.6). It contains no
attenuation and a large density jump (p, = 2.1 gem—?) at the water—bottom
interface. Hence, this problem provides a test of the treatment of the density
jump in the TBCs applied along z, = 240 m.

The source of f = 100Hz is located at a water depth z; = 30m and the
receiver depth is at z, = 90m. The sound speed profile in water is given
by ¢(z) = 1498 + 120 — 2| /60 ms™", and the sound speed in the bottom is
¢, = 1505ms~!. For our calculations up to a maximum range of 20km we
used a reference sound speed ¢, = 1500ms~! and a uniform computational
grid with depth step Az = 2m and range step Ar = 5m (the same step sizes
were used in [45]).

In Figure 1 the solid line is the solution with our new discrete TBC (3.23)

and the dotted line is obtained with the discretized TBC (3.3). The discretized
17



TBC clearly introduces a systematic phase-shift error, which is roughly pro-
portional to Az. The discretized TBC also produces artificial oscillations (cf.
the zoomed region), while our new DTBC yields the smooth solution with the
same numerical effort.

Example 1
30 T

40

(o))
o

(o2}
o
T

~
o
T

[0}
o
T

Transmission Loss -10*log_10 |p|*2

90

0 2 4 6 8 10 12 14 16 18 20
Range r [km]

FIGURE 1. Transmission loss at z, = 90m for Example 1:

the solution with the new discrete TBC (—) coincides with the

half-space solution, while the solution with the discretized TBC

(---) introduces a phase-shift and artificial oscillations.

100 1 1 1 1

Figure 2 compares the results of our new discrete TBC (solid line) to the
solution obtained with an absorbing layer of 240m thickness (dotted line)
and a homogeneous Dirichlet BC at z,,,, = 480m. Hence the computation
took about twice as long as by using the discrete TBC. In our experiments
we obtained a better match to the ‘exact’ half-space solution by using the
exponential absorption profile

ap(z) = 10[exp{4 — %

} — 1] dB /Ny, 2 < 2 < Zmags (4.1)
Zmaz — %b

rather than a linear profile. We remark that the profile (4.1) and thickness
of the absorbing layer were designed as to yield a close match to the ‘correct’
solution. Without such an ‘a—posteriori data fitting’, however, a calculation
with an absorbing layer would usually yield a solution with a somewhat larger

deviation than suggested by Figure 2. With a thicker layer one can of course
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FiGure 2. Transmission loss at 2, = 90m for Example 1:

the solution with an absorbing layer of 240m (- --) is quite sat-
isfactory in comparison to the ‘exact’ solution computed with
the discrete TBC (—). It is in phase but shows some artificial
oscillations and overestimates the transmission loss at 6km, 7km,

and in the range 16-19km.

still improve the results of Figure 2, e.g. no more artificial oscillations are

visible when using a layer of 760 m.
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Figure 3 shows the significant deviations of the solutions using either the
discretized TBC or an absorbing layer of 240 m from the computed half-space
solution, which coincides with the solution using our new DTBC.

Example 2. This example appeared as the NORDA test case 3B in the PE
Workshop I [26, 28, 37, 45]. The environment for this example consists of an
isovelocity water column (c(z) = 1500 ms™") over an isovelocity half-space bot-
tom (¢, = 1590 ms™'). The density changes at z, = 100 m from p,, = 1.0 gem™3
in the water to p, = 1.2gem™ in the bottom. The source and the receiver
are located at the same depth near the bottom: z; = 2z, = 99.5m. The source
frequency is f = 250 Hz. The attenuation in the water is zero, and the bottom
attenuation is o, = 0.5dB /Xy, where A\, = ¢,/f denotes the wavelength of
sound in the bottom. Here, the steepest angle of propagation (which is the
equivalent ray—angle of the highest of the 11 propagating modes) is approx-
imately 20° (cf. [26, 45]). Since the source is located near the bottom, the
higher modes are significantly excited. Therefore the wide angle capability is
important here and we use the WAPE (1.8) (with the coefficients of Claerbout)
to solve this benchmark problem.

The maximum range of interest is 10km and the reference sound speed
is chosen as ¢, = 1500ms™!. The calculations were carried out using the
depth step Az = 0.25m and the range step Ar = 2.5m. Since the source is
placed close to the bottom, the TBC was applied 10 m below the ocean—bottom

interface
Example 2

60

80

90

Transmission Loss -10*log_10 |p|2

—— new discrete TBC
100~ discretized TBC
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FiGURE 4. Transmission loss at z, = 99.5m for Example 2:
the solution with the new discrete TBC coincides with the half-
space solution, while the solution with the discretized TBC still

deviates significantly from it for the chosen discretization.
The typical feature of this problem is the large destructive interference null

at a range of 7km. Figure 4 compares the transmission loss results for the
discrete and discretized TBCs in the range from 5 to 10 km. In a second com-

parison we extended the computational domain up to 200 m. With the given
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bottom attenuation this 100 m layer is thick enough to yield the reasonable
approximation shown in Figure 5.
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FIGURE 5. Transmission loss at z, = 99.5m for Example 2:
in comparison to the exact half-space solution, the truncation
of the computational domain at 200 m (the given bottom atten-
uation then represents an absorbing layer of 100 m) introduces
a slight phase shift.

Figure 6 shows the deviation of the solutions with the discretized TBC
and with the absorbing layer from the computed half-space solution, which
coincides with the solution using our new discrete TBC.

Example 3. In this example we illustrate the theoretical findings of §2 on
coupled models. We use the physical parameters of the first two examples but
different models for the water and the bottom region.

We start with considering the environment of Example 2 and compare the
results of different model couplings. First we fix the WAPE of Claerbout
(CWAPE; p, =1, p, = %, ¢ = i) in the bottom and choose a different (and
in fact better) rational approximation (GWAPE) for the water region that
fulfills the coupling condition (2.23): p, = 3¢,. The two remaining parameters

Do, ¢ are then determined by minimizing the approximation error of (1 — )\)5
(in the maximum norm) over the interval [0.0008,0.103], which contains the
discrete spectrum of L: p, = 1.0000071, ¢, = 0.2501753. We compare this
approximation to the case of also using the CWAPE in the water. Furthermore,
we show the results when using the SPE in the sea bottom (which clearly

violates (2.23)) and when using the SPE in both regions.
21



Example 2

0.16
— new discrete TBC
discretized TBC
— — absorbing layer
0.12

0.04

0 1
0 20 40 60 80 100
depth [m]

FiGUurRE 6. Vertical cut of the 3 solutions at » = 7km for
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FIGURE 7. Transmission loss at z, = 99.5m in several coupled
models (water and sea bottom) for the simulation of Example 2.

Figure 7 displays a comparison of the transmission loss from 6.5 to 9km
for these different couplings. It turns out that the solution for the coupled
GWAPE/CWAPE model is very close to the one using the CWAPE in both

media. While the CWAPE/SPE model violates the coupling condition, it only
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deviates from the above solutions by a slight phase—shift that is typical for the
SPE in this example (cp. also the “pure” SPE model).

Now we turn to the dissipation—free situation of Example 1 and focus our
attention on a conservative discretization of coupled models that satisfy the
coupling condition p,(z)/q,(z) = u = const, and hence preserve the L*(IR™;
(op)~'dz)-norm (see §2). As a discrete analogue of (2.6) we obtain in the
dissipation—free case

hD;; ‘ = Im D1 o) *3 + iq ko "D
z; Up] p%kopeff ( @)Yy 1 kYr—1

x(( 0D g kT DD 1)] (4.2)

with p; = p(Z;) and o = p?/(p, — peq.). Analogously, a discrete version of (2.7)
can be shown for the bottom region j > .J:

T2
> 2 K

hD; v = Im b g +2 bkl D}

k ]z:; Tb0h (pzly)zkopeff (P! q) 4 Ro wJ 1

x ((p — Dy 4 gk D DY 1)] (4.3)

with o, = (p*)?/(p® —plg?). For coupled models o usually takes different values
in the water and bottom regions. It follows from (4.2), (4.3) that the weighted
discrete L?-norm on j € INj is preserved:

J-1 |7 o |7
. @/)n @/)
" ||? = hz { Z = const (4.4)

provided that the coupling condition (2.23) is fulfilled.

Figure 8 illustrates that the discrete L?*-norm (4.4) is conserved as long
as the coupling condition (2.23) is satisfied. In all four simulations we used
the WAPE of Claerbout for the water region and different models in the sea
bottom: only the hybrid WAPE-model with constant p,(2)/q(2) = p = 3
renders the scheme conservative (only for this numerical illustration we choose
the values p, = 0.6, ¢ = 0.2). A coupling to the SPE (like in [37]) or to
a WAPE in the bottom with p®/¢® = py # 3 all yields a non—conservative
scheme. We point out that these schemes are not only non—conservative for
the particular norm (4.4) but also for any other weighted L*-norm.

In the simulations for Figure 8, the second sum of (4.4) (for the exterior of
the computational domain) was evaluated via (4.3).

Example 4. In this example we illustrate our discussion from §3 on the ‘best
uniform exterior discretization’ for the case of evanescent waves. We want to
answer the following question: given a uniform interior discretization, can the
result from a globally uniform z—discretization be improved by choosing a finer
exterior z—discretization, or, equivalently, by using a DTBC that corresponds

to such a finer discretization?
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FIGURE 8. Coupled WAPE-models conserve the discrete L?—
norm (4.4) only when satisfying the coupling condition p,/q, =
p = const (—).

As a model problem for this test we consider the SPE (1.6) on z > 0, r > 0
with a homogeneous Dirichlet BC at 2 = 0, kg = 2m ! and the “potential well”
V(z)=0,0< z2<2,=100m, V(z) =V, = 0.3, z > 2. In this example, plane
waves with a wave number k& < k. = v/1.2m ™! are evanescent in the exterior
domain z > 2, and k > k..;; transmits a traveling wave into the exterior. We
choose here the Gaussian beam exp(ikz—0.003 m ?(2—50m)?) with £k = 1m !
as an initial condition. For this choice of £ ‘most’ of the Fourier components
of this wave correspond to evanescent modes in the bottom. Hence, this wave
will be predominantly reflected back into the interior domain.

Figure 9 compares the effect of choosing different (uniform and nonuniform)
z—discretizations. We show the results of this simulation at the range r = 200 m
when the wave packet has been reflected back from the water—bottom interface.
The solid line was obtained with the uniform z—discretization hy = 0.05m,
and it will serve as our ‘exact’ reference solution. The dashed line shows
the solution with the uniform grid spacing hy = 0.25m. In the following
comparisons we will keep this coarser interior grid and will vary the uniform
exterior grid. Following our discussion from §3, we used a gradual transition
between these two grid spacings in the depth interval 100 — 110 m (piecewise
linear grid spacing function h(z)).

The dotted curve of Figure 9 gives the results with the finer exterior z—
discretization hy = 0.1 m. Close to the sea bottom it shows significant improve-

ments over the uniform discretization with A;. In the interval 0 < z < 60m
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FIGURE 9. The ‘best uniform exterior z—discretization’ may be
finer than the interior discretization. Vertical cut of the three so-
lutions at 7 = 200 m for Example 4: the solution (- - -) calculated
on a nonuniform grid (finer grid in the exterior domain than in
the interior) is more accurate in the interior domain than the so-
lution obtained on a uniformly coarse grid (———). The reference
solution (—) was calculated on a uniformly fine grid.

both curves almost coincide as the interior discretization error is dominant
there, and it implies inaccurate wave speeds that are reflected in the clearly
visible phase shift. The dotted curve still exhibits this phase shift up to
the sea bottom at 100 m, but for the dashed curve the error in the interval
80m < z < 100m is dominated by the effect of the exterior discretization. It
thus seems that the effect of the reduced exterior discretization error (due to
the finer exterior discretization) may outweigh (in the interior domain!) the
additional reflection errors incurred by the nonuniform grid.

The L?(0,100)-errors (w.r.t. the solid curve) of the solutions with the uni-
form h;—discretization and the nonuniform h; / hy—discretization are, respec-
tively, 0.0370 and 0.0267. Using an even finer exterior discretization does
not seem to improve the result much further (L*-error 0.0266 for the hy / ho—
discretization). A finer exterior discretization would, however, require a thicker

region to adapt the two grids.
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We thus conclude that finer exterior discretizations may indeed be advan-
tageous in the case of evanescent waves, and for large ranges these are the
important modes in the considered applications of underwater acoustics.
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5. CONCLUSIONS

We have derived a new discretization (discrete TBC') of the TBC for the
WAPE of acoustics. It is of discrete convolution form involving the bound-
ary data from the whole “past range”. The convolution coefficients s, are
calculated via a simple three—term recurrence relation and they decay like
O(n=3/2). Since our new DTBC has the same convolution structure as exist-
ing discretizations, it requires the same computational effort but improves two
shortcomings: DTBCs are more accurate (in fact, as accurate as the discrete
half-space problem) and they yield an unconditionally stable scheme.

We point out that the superiority of DTBCs over other discretizations of
TBCs is not restricted to the WAPE or to our particular interior discretization
scheme (see e.g. [5, 17, 19]). The crucial point of our derivation was to find
the inverse Z-transformation of (3.10) explicitly. In more general applications
(e.g. higher order Padé approximations or 3D—problems) it might be necessary
to derive the convolution coefficients in (3.14) through a numerical inverse Z—
transformation [30], but this does not change the efficiency and stability of the
presented method. As a general philosophy, DTBCs should be used whenever
highly accurate solutions are important.

APPENDIX A. PROOF OF THEOREM 1
(WELL-POSEDNESS OF THE WAPE)

In Theorem 1 we assumed that V, p, p~' € L>°(IR"). Then, the Schrodinger
operator

L=—k7?p0d,(p7'0,) +V(2) (A.1)

with a homogeneous Dirichlet BC at z = 0 is self-adjoint in L*(IR™; p~'dz)
with the dense domain

D(L) = Hy(R") n {wlp~ ¢, € H'(R')}. (A.2)
We now consider the operator f(L) = ”f:—(ilLL defined as
fm = [ royar, (A3)

with dP, denoting the projection valued spectral measure of the operator L
(cf. [18, 38]). According to [18, Th. XII.2.6] the domain of f(L) is dense in
L?(R*; p~'dz) if and only if X = ¢!, the pole of f()), is not an eigenvalue of L.
In this case f(L) is self-adjoint and, by Stone’s Theorem [38], ik, f(L) generates
a unitary Cp—group on L?(IR*; p~'dz), which yields the unique solution to
(2.1). O

If \ coincides with an eigenvalue A; of L, then (2.1) still admits a unique
mild solution for all initial data in the orthogonal complement of ¢;, the unique
eigenfunction corresponding to A;. Theorem 1 generalizes the well-posedness
analysis for the WAPE on finite intervals given in [3]. There, however, A can
easily lie in the (pure eigenvalue) spectrum of L, what then restricts the class

of admissible initial conditions.
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AprPENDIX B. WAPE-SPE couPLING

Here, we discuss the mathematically sound formulation of the coupled WAPE—-
SPE model for the simple model case of constant ¢ and p. We first con-
sider the pseudo—differential operator f(L) appearing in the WAPE (2.1) with
L = —k;20%. Due to the BC at z = 0 it can be expressed in terms of Fourier—
sine transforms as

(/(1) / / y)sin(ey)sin(€2) dydg,  (B.1)

with the symbol
Do — k.72§2
&) ="T— 5
1 —qko "¢
In the coupled WAPE-SPE model one would formally want to write the
evolution equation as

(B.2)

'QZ)T = Z.k'oAQ/) (B3)
with o
Po +p1 a
Dot Pl 9 )y, 0<2< 2,
Ap = ( 1+ g k202 . ) v e (B.4a)
0 2

However, as the pseudo—differential operator in (B.4a) is non-local, acting
on L?(IRY), it cannot be simply restricted to the interval 0 < z < z,. It is
therefore appropriate to define the coupled evolution equation on the symbol
level of the two involved operators (cf. [20, 25]). Without attenuation both the
SPE and the WAPE conserve the L?-norm and the discrete analogue of this
conservation is the main ingredient for showing unconditional stability of the
finite difference scheme in §3. Therefore we postulate that the coupled model
also has to conserve the L?-norm. This can be achieved if the operator A on
the right hand side of (B.3) is interpreted as the Weyl operator (see [20])

/ / <y i ) Y(y) sin(Ey) sin(€2) dy dz (B.5)

to the symbol

(s, £) — {@(g) —1, 0<z<gz, B5)

ko~ ¢2
—=3-£7, z > 2.

As a(z,€) is real, one readily verifies that the evolution equation (B.3), (B.5)
conserves the L?-norm.

Due to the pole of the symbol ®(£) it would be quite difficult to appropriately
discretize (B.3), (B.5), and it is beyond our scope here. We remark that finite
difference schemes of pseudo—differential equations with smooth symbols have

recently been studied in [31].
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