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Abstract

We consider a class of evolution equations in Lindblad form, which model the
dynamics of dissipative quantum mechanical systems with mean field interaction.
Particularly, this class includes the so-called Quantum Fokker-Planck-Poisson
model. The existence and uniqueness of global, mass preserving solutions is
proved, thus establishing the existence of a nonlinear conservative quantum dy-
namical semigroup.
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1 Introduction

We consider a quantum mechanical system coupled to its surrounding, i.e. a
so called open quantum system [Dal], [BrPe]. In this case, the Hamiltonian
dynamics, appropriate for an isolated system, needs to be replaced by a more
general class of dynamical maps. In the Schrédinger picture, such a map ®; acts
on the space of density matrices p, or, more precisely, on the space of positive
self-adjoint trace class operators p € J1(H) over some Hilbert space H, say
L?(RY).

In the Markovian regime, i.e. if no memory effects appear in the dynamics, @
satisfies the semigroup property. A semigroup ®; which is strongly continuous,
completely positive and which additionally preserves the trace on J;, i.e. the
mass of the particles, is called a conservative quantum dynamical semigroup
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(QDS). We refer to [FaRe] for a modern (mathematical) introduction to the
theory of QDS and to [Al], [AlFa], [BrPe], [Sp] for physical applications.

Any QDS can be represented by ®;(po) = e“*po. Its generator £, governs the
time-evolution of p(t), through a so-called Markovian master equation,

d
nP= L(p), t>0,
plig = Po € 1.

It is well known that, if £ is a bounded operator, it has to be in the so called
Lindblad class [Li] in order to define a completely positive (and conservative)
QDS (the same result has been proved independently in [GKS]). In most cases,
however, £ is unbounded and so far no complete characterization of admissible
generators, in the above sense, is known.

Indeed, already more than 20 years ago, E. B. Davies showed in his classi-
cal work [Dal], that it is possible to construct, for a quite general class of
unbounded Lindblad generators £, a so called minimal solution to the above
master equation. However, this construction in general is not unique, i.e. the
formal (unbounded) generator £ does not uniquely determine a corresponding
QDS. This in particular implies that the minimal solution may not be trace
preserving, cf. example 3.3 in [Dal]. From a physical point of view it seems
that nonconservative (sometimes called ezplosive) solutions are reasonable only
in situations where particles can be created or annihilated as discussed for ex-
ample in [Da], [Dal]. A recent mathematical study of such nonconservative
minimal solution can be found in [Qu].

Nowadays, various sufficient conditions for conservativity can be found in [ChFa],
[CGQ], and in [Ho], where additionally certain covariance properties on the gen-
erator £ are imposed. For many concrete examples, however, these conditions
are rather difficult to verify, as we shall discuss in more detail at the end of
section 3.

The present work establishes the existence and uniqueness of a conservative
quantum dynamical semigroup for a concrete family of unbounded operators L,
which are formally in the Lindblad class. The considered Lindblad operators,
which represent the influence of the environment, are linear combinations of
the position and momentum operators. This particular choice of operators is
motivated by the physically interesting Quantum Fokker-Planck models, which
frequently appear in the literature on open quantum systems. (Concrete appli-
cations of such equations are discussed at the end of section 2.) So far, only
partial results on the rigorous derivation of these models from many-body quan-
tum dynamics are available. In this context, our work (at least) shows that such
models indeed generate a conservative QDS, i.e. they satisfy the basic physical
requirements.

Throughout this paper, we shall work in the Schrédinger picture, which is more
appropriate in our case. We consider a system coupled to its environment and,
moreover, we include the possible interaction of the particles with each other,
in our case modelled by a mean field approximation of Hartee type (extensions
to Hartee-Fock systems would be possible by using techniques as in [ABJZ]).
More precisely, we consider the master equation to be self-consistently coupled
to the Poisson equation

Ap=—kn, k==l1,
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where n = n[p] is the particle density computed from p. The choice of the
coupling constant K = %1 corresponds, respectively, to the (usual) repulsive
and attracting case (see [Lie] for a quantum-attractive model). In the following,
we shall analyze only the repulsive case. However, using modified a-priori energy
estimates (as in [Ar]) it is possible to include the case Kk = —1.

We remark that the literature of rigorous studies of QDS has mainly focused
on linear master equations (see e.g. the works quoted above). To the authors’
knowledge the only results including nonlinear effects are [Arl] and [AlMe],
which, however, can not be applied directly to our case.

This paper is organized as follows:

After introducing the model in section 2 we will prove in section 3 existence
and uniqueness of global, mass preserving solutions, i.e. existence of a conser-
vative QDS, to the linear equation. A crucial analytical tool towards this end
is a new density lemma (relating minimal and maximal operator realizations)
for Lindblad generators £ that are quadratic in the position and momentum
operator. The mean field will then be included in section 4 (we shall restrict
ourselves for simplicity to the case of d = 3 spatial dimensions). We prove that
the self-consistent potential is a locally Lipschitz perturbation of the free evolu-
tion in an appropriate “energy space”, and this yields a local-in-time existence
and uniqueness result. Finally, we shall prove global existence of a conservative
QDS in section 5 by establishing a-priori estimates for the mass and total energy
of the system.

2 The model equation

Throughout this work we set the physical constants A = m = e = 1, for sim-
plicity.
In the sequel we shall use the following standard notations:

Definition 2.1. An operator A is trace class, if
1Allly = Tr|A] < oo (2.1)
and it is Hilbert-Schmidt, if
1
A[ll, = (Tr|A]*)* < oo, (2.2)

where Tr denotes the usual operator trace on B(L?(R?)) (bounded operators).
The corresponding spaces of operators are denoted by J; and Ja, respectively.
If A is trace-class and self-adjoint, we shall write A € J; C J;. Finally, denoting
by [| - ||, 1 < p < oo, the usual LP(R%)-norm, we write

Al := sup IAfll,,  f e DA, [Ifll, =1, (2.3)

for the operator norm of A € B(L?(R?)) with domain of definition D(A).

We consider open quantum systems of massive, spin-less particles within an
effective single-particle approximation, as it has been studied for example in
[CEFM]. Hence, at every time t € R a physically relevant, mized state of our
system is uniquely given by a positive operator p(t) € Ji, in the sequel called
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density matriz operator. Since p is also Hilbert-Schmidt it can be represented
by an integral operator p(t) : L2(R?) — L2(R?), i.e.

(PON@) = [ a7 ). (24

Its kernel p(-,-,t) € L*(R?*®) is then called the density matriz function of the
state p. By abuse of notation we shall identify from now on the operator p € J;
with its kernel p(-,-) € L*(R*?). It is well known [ReSi1] that |||p|||, = [|ol|,, i-e.

whl)? = ([ [, otealasay) g (25)

Further, it is known that every density matrix operator p possesses a diagonal
Fourier expansion of the form

p(z,y) = D> N (@);(y), (2.6)

JEN

where {\;} € I'(N), \; > 0, and the complete o.n.s. {;} C L?(R?) are the
eigenvalues and eigenfunctions of p. The \; represent the occupation probability
of the pure state 1);. Note that for self-adjoint p > 0 the trace norm is equal to

el == Trlpl = Trp = Aj (2.7)
JEN

Using equation (2.6) one can define the particle density n[p] by setting z = y,
to obtain

nlpl(@) =Y N [9(@)f°, @ e R (2.8)

JEN

However, since {z = y} C R*? is a set of measure zero, this is not a mathemat-
ically rigorous procedure for a kernel p(x,y) that is merely in L?(R??). On the
other hand, if p(z,y) is indeed the kernel of an operator p € 7 it is known, cf.
[Ar], [LiPa], that the particle density can be rigorously defined by

—|nl?/2e
— 1 no,_mye —
n[p](z) := lim de (:1: t57 2) @ne)i?

LY (RY). 2.

lin d € T4 (RY) (2.9)
And it satisfies ||n||1 = Tr(p) for p > 0. This issue of rigorously defining n[p]
is one of the mathematical motivations for analyzing our mean field evolution
equations as an abstract evolution problem for the operator p on the Banach

space J; (and not as a technically much easier PDE for the function p on
LQ(RM)).

Remark 2.2. Note that we can not use the decomposition (2.6) in order to
pass to a PDE problem for the 1);, since the considered dissipative evolution
equation in general does not conserve the occupation probabilities A;. This is
in sharp contrast to unitary dynamical maps generated by the von Neumann
equation of standard quantum mechanics.



Quantum Dynamical Semigroups 5

We consider the following (nonlinear) dissipative equation modeling the motion
of particles, interacting with each other and with their environment

d

—p=—i[H A t>0

s i ,p~]+ (p), ; (2.10)
p|t:0=p0€..71-

Here, [, ] is the commutator bracket, H and A(p) are formally self-adjoint and
of Lindblad class. More precisely, we consider the Hamiltonian operator

H o= -2 Ve, t) —inle. V], neR (2.11)

denoting by [-, -] the anti-commutator. The operators x and V are, respectively,
the multiplication and gradient operator on R?, i.e. [z, V] =2 V+V.z=
2z -V +d.

Remark 2.3. The operator H is sometimes called adjusted Hamiltonian, due to
the appearence of the [z, V]- term. Depending on the particular model, such a
term may [ALMS] or may not be present [Va]. Nevertheless it is included here,
in order to keep our presentation as general as possible.

The (real-valued) potential V' is assumed to be of the form

2
z
Vi@t = 2 i) + o), e B, (2.12)
where the first term of the r.h.s. denotes a possible confinement potential and
Vi € L®(R?) is a bounded perturbation of it. ¢ is the Hartree- or mean field-
potential, obtained from the self-consistent coupling to the Poisson equation

A¢lp] = —n[p]. (2.13)
For d = 3, we therefore get the usual Hartree-term:
L [ nlply,t) 3
t —=d R 2.14
o) =3 [ TEED dy aye®, (214)

where n is computed from p by (2.9). This mean field approximation describes
the (repulsive) Coulombian interaction of the particles with each other.

The non-Hamiltonian part is defined as
ZLJpL* [L;Lj,p],, MEN, (2.15)
or equivalently

n=3 30

Jj=1

L1
[Lip, L] + 5 [Ls: L5] (2.16)

l\DIi—‘

where the linear operators L; (Lindblad operators) are assumed to be of the
form

Lj:=oaj-z+6;-V+, aj,ﬂjE(Cd,’ij(C. (2.17)
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Its adjoint is L} = @; - = — Bj - V + 7;, and in the following we shall use the
notation

M
L:= Z LiL;. (2.18)
j=1

Remark 2.4. In the framework of second quantization and in d = 1, the space
L2(R) is unitarily mapped onto F,(C), the symetric or bosonic Fock space over
C. This space is frequently used, for example in quantum optics, in order to
describe two — level bosonic systems, cf. [AlFal, [GaZo).

Assuming v = 0, § = 1 and o = 1/2, the Lindblad operators L, L*, become
then the usual bosonic creation- and anihilation-operators

X

af(2) = (5 +0)f(), a*f(a) = (5 - 0)f(@), (2.19)

which, in contrast to the corresponding fermionic creation- and anihilation-
operators, are unbounded. Of course, all results in our work can be equivalently
interpeted in this framework of second quantization.

Example 2.5. A particularly interesting example in the above class is the
Quantum Fokker-Planck equation (QFP). As a PDE for the kernel p(z,y,t) €
L?(R2?) it reads
A, Ay
Op=—i|—— +V(@ )+ =Vt) ) p=vz=y) (Va=Vy) p

+ (qu|vw + Vy|2 — Dpplz — y|2 +2iDpg(x —y) - (Vo + Vy)) P>

(2.20)
subject to
p(z,y,t =0) = po(z,y). (2.21)
This model can be written in the form (2.10), (2.15), iff the conditions
2
DppDyy — D2, > VT Dpp, Dgq > 0, (2.22)

hold (see [ALMS] for more details and a particular choice of the parameters p,
a5, Bj, v; = 0). The name Quantum Fokker-Planck equation stems from the
fact that (2.20) can be transformed into the following kinetic equation

Oyw + & -Vyw + OV]w = Quw, z,E€RLE>0
fw + [V] £ (2.23)
wl|,_, = wo(x, &)
using the Wigner transform [Wi], [LiPa]
—_1 Y oY) i
w(z, &, t) == @) /de<a:+ 50 & 2,t) e Ydy. (2.24)

The diffusion operator Q in (2.23) is defined by
Quw(z,€) == DppAgw + 2y dive(§w) + DggAzw + 2Dpq div, (Vew). (2.25)

Clearly, this is a generalization of the classical kinetic Fokker-Planck operator
(FP), obtained by setting Dgy = Dpy = 0, cf. [Ri]. This case also corresponds
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to the so called Caldeira-Leggett master equation [CaLe]. Note that for v > 0,
condition (2.22) implies that (2.25) is uniformly elliptic, which disqualifies the
classical FP diffusion operator as an appropriate quantum mechanical equation.
Nevertheless, it is sometimes used in applications as a phenomenological quan-
tum model, cf. [St].

In (2.23), the pseudo-differential operator O[V], acting on the (not necessarily
positive) phase space distribution w, is defined by

OV]w(z,&,t) = #//Rdxkd [V (x—}— %,t) -V (m - %,t)]
w(z, &,t) eV EEdg'dy.  (2.26)

First analytical results on the Wigner-Fokker-Planck equation (2.23) are in
[SCDM] (linear equation, large-time behavior) and in [ALMS] (local-in-time
solutions for the mean-field model). Equations of Quantum/Wigner-Fokker-
Planck type play an important role within the areas of quantum optics (laser
physics), quantum Brownian motion and the description of decoherence and
diffusion of quantum states, cf. [De], [DGHP], [DHR], [Di], [Dil], [HuMa],
[Va], [Val] and the refernces given therein. The self-consistent Wigner-Poisson-
Fokker-Planck systems is also used for semiconductor device simulations [St].
Indeed most of these models can be traced back to an early work by Feynman
and Vernon [FeVe].

So far, however, a rigorous derivation of the QFP equation from many-body
quantum mechanics is still missing. To the authors’ knowledge, the only re-
sults in this direction are [CEFM], [FMR], where some special cases of the QFP
equation are derived, using the Wigner formalism.

For more information on the rigoros derivation of Markovian master equations
we refer to [Al], [Sp].

3 Existence of a conservative QDS for the linear
problem

We consider the linear evolution problem on jl

d
p|t=0:p0€‘71'

Here, £(p) := —i[H, p] + A(p) is the formal generator of a QDS on J;, with

A 2
g=-2 4+ 2 vie) —infe, Vs (32)

Definition 3.1. Given any Hilbert space H, one defines a conservative quantum
dynamical semigroup (QDS) as a one parameter Cy - semigroup of bounded
operators

& i(H) = Ti(H), (3.3)

which in addition satisfies:
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(a) The dual map @} : B(H) — B(H), defined by
Tr(4%,(p)) = Te(B}(4)p), (3.4)
for all p € J1(H), A € B(H), is completely positive. This means that the map
;1L : B(H) @ B(Hn) = B(H) @ B(Hy) (3.5)

is positive (i.e. positivity preserving) for all n € N. Here H,, denotes a finite
dimensional Hilbert space and I,, is the n — dimensional unit matrix.

(b) ®; is trace preserving, i.e. conservative (or unital).

Remark 3.2. The notion QDS is sometimes reserved for the dual semigroup ®}.
Physically speaking, this corresponds to the Heisenberg picture. The appropriate
continuity is then

lim Tr(p(®;(A) — A)) =0, (3.6)

t—0

for all p € J1(H), A € B(H), i.e. ultraweak continuity. Complete positivity can
be defined also for operators on general C*-Algebras A4 [Sti] and it is known
that complete positivity and positivity are equivalent only if A is commutative.
(Counter-examples can be found already for 2 x 2 complex valued matrices, see
e.g. [AlFa].) Again, from a physical point of view, complete positivity can be
interpreted as preservation of positivity under entanglement.

Following the classical work of Davies [Dal] we shall start to investigate the
properties of the operator

1
Y= —iHl - 7L. (3.7)

First we need the following technical lemma, the proof of which introduces some
important notations used throughout this work.

Lemma 3.3. Let P := py(x, —iV) be a linear operator on L?(R?) over the field
C, where py is a complex valued, quadratic polynomial and specify its domain by

D(P) :={f:Ref,Im f € C*(RY)}. (3.8)
Then P is the mazimal extension of P in the sense that

D(P) = {f € L*(R?) : the distribution Pf € L*(R%)}. (3.9)
Proof. (sketch) Let us define a mollifying delta sequence by

on(z) := np(nz), z€R neN, (3.10)

and assume that

PECE, 920, ¢(@) = p(0), [ v(@)s=1, swpppc{le] <1}

Also, a sequence of radially symmetric cutoff function is defined by

Xn () := X (%) , zeR neN, (3.11)
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such that it fulfills for all z € R4
Xn € C5°, 0< x <1, suppx C [0,1], X[y =1
i)

In the sequel we shall use the resulting bounds

|X(m)(w)| < K,,, meN.
We define an approximating sequence for f € L?(R?), by

In(x) == xn(z)(f * on)(x), ne€N (3.12)

Clearly, f, € D(P) by construction. We have to prove that for all f € L?(R?),
with Pf € L2(R?), f, — f in the graph norm ||f||5 := [|f|l, + ||Pf]|,- Because
©n — d in D'(R?) (the space of distributions) and x, — 1 pointwise, we clearly
have

frn =3 fin L2(RY). (3.13)

The remainder of the proof, i.e. Pf, — Pf in L?(R?), is now analogous to the
proof of lemma 2.2 in [ACD], when extended to complex valued functions f. A
similar strategy is used again in the proof of lemma 3.7 below. |

Remark 3.4. Lemma 3.3 asserts that the minimal and mazimal operators de-
fined by the expression P = po(x,—iV) coincide. This fact is closely related to
the essential self-adjointness of Schrédinger operators, cf. §2.8.6 in [EgSh]. The
lemma provides an elementary proof of the well known fact that the Hamilto-
nian H = —A — |z|? is essentially self-adjoint on C§°(R?), cf. [Ka], Corollary to
Theorem X.38 in [ReSi2]; - just apply the lemma to H with D(H) = C§°(R?)

and to H* ‘D(H). On the other hand, it is well known that H = —A + 2% — 2% is
not essentially self-adjoint on C§°(R), cf. Example 1 of X.5 in [ReSi2]. There-
fore, lemma 3.3 can, in general, not be extended to higher order polynomials
p(z,—iV).

This can be further illustrated by the following example, cf. [CGQ]: Consider
the third-order symmetric operator H = i((1 4+ 22)8, + 0,(1 + %)) on C§°(R).
Then H is not essentialy self-adjoint, since one can easily check that there ex-
ists a nontrivial eigenvector corresponding to the eigenvalue —i. Thus the above
lemma can not be extended to this case either.

With the above lemma we can now prove that the main technical assumption
on the operator Y (imposed in [Dal], [ChFa]) is fulfilled.

Proposition 3.5. Let Vi = 0 and let the operator Y be defined on
DY) :={f € L*(R?) : Af,|z|*f € L*(R%)}. (3.14)

(a) Then its closure Y is the infinitesimal generator of a Cy - contraction semi-
group on L?(R?).
(b) Further, the operators Lj, L} : DY) = L*(R?) satisfy

M
Yf,9)+(f,Yg)+ ) (L;jf,Ligy=0, VfgeDT), (3.15)
j=1

where (-,-) denotes the standard scalar product on L?(R?).
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Proof. First note that for f € D(Y) the term z - V f, which appears in Y f, is
also in L2(R?). This can be obtained by an interpolation argument. Further,
D(Y) is dense in L?(R?), since C5°(R?) is. By Lemma 3.3 we have

DY) ={f € L*(R?) : Y f € L*(R%)}.

Part (a): The proof proceeds in several steps:
Step 1: We study the dissipativity of Y, which in our case is defined by

Re(Yf,f) <0, VfeD).
Since H from (3.7) is symmetric we obtain
Re(iHf,f) =0, VfeD(Y).
Also we get
—Re(LjL;f, f) = = (L;f,L;f) <0, VfeD{).

Thus Y is dissipative and by theorem 1.4.5b of [Pa] also its closure Y is.
Step 2: Tts adjoint is Y* = {H — L, with domain of definition D(Y*). We have
D(Y*) DD(Y), since

(Yf,g)=(f,Y"g), Vf,geDY).

As in step 1 we conclude that Y™ ) is dissipative. We can now apply lemma

33to P =Y* - with D(P) defined in (3.8). Then P is dissipative on

D(P) C DY) C D(Y*). Since Y* is closed, we have D(Y*) = D(P), the
domain of the maximal extension. Thus Y* is dissipative on all of D(Y*).
Step 8: Application of the Lumer-Phillips theorem (corollary 1.4.4 in [Pa]) to
Y (with (Y)" = Y*) implies the assertion.

Part (b): We need to show: If £,V f € L*(R%), then L; f, L} f € L*(R?*) follows.
This can be easily seen from the fact that

S LS Lif) = ~Re(¥ £, f) < co.
J

Equation (3.15) is then obtained by a simple computation. O

With these properties of Y (as stated in proposition 3.5), theorem 3.1 of [Dal]
asserts that (3.1) has a so called minimal solution:

Proposition 3.6. [Davies '77] There exists a positive Cy - semigroup of contrac-
tions ®, on Jy. Its infinitesimal generator is the evolution operator L, defined
on a sufficiently large domain D(L), such that J, D D(L) D D(Z).

Here, Z : D(Z) — J, is the mazimally extended operator with domain

D(Z) ={p € D(L*RY)): Z(p) :=Yp+pY* € J1(L*(R"))}. (3.16)

From the above proposition we learn that the formal generator £, in general,
does not unambiguously define a solution of the corresponding master equation,
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in the sense of semigroups. Also, it is well known, that the obtained minimal
solution need not be trace preserving (for nonconservative examples see e.g.
[Dal], [Ho], [Qu]).

On the other hand, if the semigroup corresponding to the minimal solution
preserves the trace, it is the unique conservative QDS associated to the abstract
evolution problem (3.1), c¢f. [CGQ], [ChFa], [FaRe], [Ho]. This situation is
similar to the one for the Kolmogorov-Feller differential equations appearing in
the theory of Markov processes [Fe].

We are going to prove now that in our case the minimal solution is indeed the
unique QDS. To this end, we need to introduce some more notation:

From now on we denote by

(M(9)f)(z) = g(2)f(z), (C(9)f)(2):= (g% f)(z), g€ CFR?),

[43 ”

a family of multiplication and convolution operators on L?(R?), where is
the usual convolution w.r.t. z. Further we define, for n € N, a family of sets
Dy C Ji(L*(R7)) by

Dpi={on€Ji:3Ip€ T st.0n =M(xn)C(pn)p Clen)M(xn)}, (3.17)

*

where xpn, @n are the cutoff resp. mollifying functions defined in the proof of
lemma 3.3 above. For an operator p > 0 with kernel (2.6), the operator o,, has
an integral kernel given by

on(z,y) = xn(m)wn(w);p(w,y);son(y)xn(y)

= )N 9in(@) 9inv), (3.18)
jEN
where ;1 (z) = xn(2)(ion * ;)(z) € C° () and |lp; all, < [lll, = 1. Since
op > 0 we get
loullly = Tron =D Aillesalls < YA = lllollly- (3.19)
JeN JEN
The unit of all sets D,, will be denoted by
Do i= U D,. (3.20)
neN

Also we shall write for the graph norm corresponding to £

lellz = lllellly + £ (3.21)

Then the following technical result, which is a key point in the existence and
uniqueness analysis, holds.

Lemma 3.7. Let Vi = 0. Then:

(a) The set Dy, is dense in J;.

(b) Do C D(Z) C D(L).

(c) The operator L |p_ is the mazimal extension of L, in the sense that for
each p € Ji, with L(p) € Jh, there exists a sequence {op}nen C Doo, such that

Tim [lp— ol = 0. (3.22)
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Proof. The proof is deferred to the appendix. O

Remark 3.8. For all p € Ji, £(p) can be defined (at least) as an operator
L(p) : C°(RY) — D'(R?), the space of distributions. For L£(p) € J1 to hold,
first of all an appropriate extension has to exist, such that £(p) € B(L*(R?)).

We are now in the position to state our first main theorem:

Theorem 3.9. Let Vi = 0. The evolution operator L generates on Ji a conser-
vative quantum dynamical semigroup of contractions ®;(p) = e*tp. This QDS
yields the unique mild solution, in the sense of semigroups, for the abstract
evolution problem (3.1).

Proof. Existence of ®;(p) = e*tp is guaranteed by proposition 3.6. As a semi-
group generator L is closed, and by lemma 3.7 it is the maximally extended
evolution operator. This implies uniqueness of the semigroup. Complete posi-
tivity then follows from Stinespring’s theorem [Sti], [AlFa].

It remains to prove the conservativity for the obtained QDS. This will be done
by using a similar argument as in the proof of theorem 3.2 in [Dal]:

Step 1: For the special case pg € D(L) the trajectory ®4(po) is a classical solu-
tion (in the sense of semigroups, cf. [Pa]), i.e. ®;(po) € C*([0, 0), J1(L3(R?)))
and ®;(po) € D(L), V t > 0. Hence Tr ®;(pg) € C'([0,00), R) and we calculate
for t > 0:

ey (p0) = Tr S, p0) = Tr £(®4(p0) = 0. (3.23)
To justify the last equality we note that Dy, is || - ||z - dense in D(L), by
lemma 3.7 (¢). Thus we can approximate ®;(pg), for every fixed t > 0, by
an appropriate sequence {0,} C Dy. Since Dy is included in the domain of
each “term” (A.1) of the operator £ (as the proof of lemma 3.7 (b) shows), the
cyclicity of the trace yields Tr £(®:(pg)) = 0. Equation (3.23) then implies

Tr ®;(po) = Trpo =0, Vpo € D(L),t > 0.

Step 2: The general case pg € J1(L2(R%)) (i.e. ®,(po) is a mild solution) follows
from step 1 and the fact that D(£) is dense in J; (L?(R?)). O

From the above theorem, we obtain the the following corollary:

Corollary 3.10. For p € D(L) let

£(p) = L(p) + Ly (p), (3.24)

where

Lo(p) =—ilVi,pl+ D LipLy — 5 [L5Ls0], (3.25)
j=M+1

with Vi € L®(R?), L; € B(L*(R?)) and the sum converges in B(J1 (L (RY))).

Then the perturbed operator L again uniquely defines a conservative QDS of
contractions.
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Proof. Existence and uniqueness of the Cy-semigroup follows from standard
perturbation results, c¢f. [Pa]. To prove conservativity of the perturbed QDS,
let p(t) denote the solution of

Lp=L0), pl0)=po.

The conservativity then follows from Duhamel’s representation

¢

plt) = Bulpn) + | Be-s(L,(p(s)) s, (3.26)
by noting that Tr(L,(p)) = 0. All other properties can be established by the
same procedure as in theorem 1 of [AIMe] or by a Picard iteration. O

Remark 3.11. An alternative approach to prove theorem (3.9) could be to
verify the sufficient conditions of [ChFa]. In fact their assumptions Al and A2
are simple consequences of our lemma (3.3) and proposition (3.5). For their
third condition A3 however, one would need to prove that C§°(R?) is a core for
Y2, defined on

D(Y?) :={f e DY) :Yf e DY)} (3.27)

With considerable more effort, the proof should be possible by extending the
strategy of lemma (3.3). However, one can expect quite cumbersome calcula-
tions.

4 Local-in-time existence of the mean field QDS

We shall now prove existence and uniqueness of local-in-time solutions for the
nonlinear evolution problem

d
—p=L t>0
5P = L), ) > (41)
p(0) = po € J1.
Here, the nonlinear map L is given by
] A ,
L(p) = =i | =5 +VIp] — iple, V], p| + Ao) (4.2)

where the self-consistent potential V[p] is given as in (2.12) and A(p) is the
Lindblad operator defined by (2.15) and (2.17).

To this end, we shall prove that the linear evolution problem (3.1) not only
defines a Cy-semigroup in J; (guaranteed by theorem (3.9)) but also in an ap-
propriate energy space. This is a parallel procedure (apart from severe technical
difficulties) to solving the Schridinger-Poisson equation in H'(R?), cf. [GiVe].
Note that Davies’ construction of a minimal QDS is valid only in J;. Hence, the
required additional regularity of ®;(pg) has to be established explicitly. Also,
one has to prove seperately that this nonlinear model conserves the positivity
and the trace of p.

In the following, we shall restrict ourselves to the physical most important case
of d = 3 spatial dimensions.

Let us start by introducing the following definitions:
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Definition 4.1. The kinetic energy of a density matrix operator p € J; is
defined by

BH[g] o= L (V=K oI/~ E) 20, (4.3)

where v/—A denotes a pseudo-differential operator with symbol ||, £ € R?, i.e.
1 itz

V=AS(@) = g [ FD@e s, vF e HRY. (4.4

Further, we define the external and the self-consistent potential energy of p € T
by

Ep) := 5 Te(fe] ol fel) > 0, E*[g] = 1 Tx(gelo) (45)
The total energy will be denoted by

E"![p] := E*"[p] + E**'[p] + E*°[p]. (4.6)
In the sequel we shall work in the following energy space &:

£:={pe T :V=-AlplV=A,|z||p||z| € 71}, (4.7)
equipped with the norm

lelle = Tl + IV =Alplv=Alll, + [ ] pl]]l;- (4.8)

Note the additional factor 1/2 in front of the term E*¢[p], which does not appear
in the Hamiltonian (2.11), (2.12). It is due to the self-consistent nonlinearity,
cf. [Ar]. For physical states we have p > 0, from which we easily get E*¢[p] > 0,
since p > 0 implies n[p] > 0 and hence ¢[p] > 0, by (2.14).

Further note that in this defintions we neglected the term —iu[z, V], which
appears in the generalized (or adjusted) Hamiltonian operator (2.11) of our
system. Thus, even in the linear case, we have E%![p] # Tr(Hp). The latter
term would be the more common definition for the energy of the system. We
note that we shall use E**![p] only for deriving a-priori estimates and towards
this end E®°![p] is the more convenient expression.

Remark 4.2. Using the cyclicity of the trace, one formally obtains the more
common expression for the kinetic energy of a physical state p > 0:

] = 2 Te(/ =B p/~R) = £ Tr(~Ap) (49)

However, these two expressions for E*"[p] are not fully equivalent, since Ap €
Ji requires more regularity on p than just requiring v—Apv—A € J;. (For
more details see e.g. [Ar] and the references given therein.) We further remark
that if the kernel of p is given as in (2.6) the kinetic energy reads

: 1
BRmp) = 530 IV > 0. (410)

JEN

Using these definitions, we will now prove that the sum of kinetic and (external)
potential energy is continuous in time during the linear evolution.
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Lemma 4.3. Let Vi =0 and po € €, then

(B 4 E**)[p(t)] € C([0,00); R), (4.11)
where p(t) := ®;(po) € C([0,00),J1) denotes the unique QDS for the linear
evolution problem, given by (3.1).

Proof. The idea of the proof is to derive a differential inequality for E*¥" 4 Eezt
from (3.1). First, we note that each po € £ C Ji can be uniquely decomposed
into its positive and negative part: po = p§ — py, with pf > 0, cf. [ReSil].
Since ®; preserves positivity, we can restrict ourselves in the following to the
case po > 0 and hence p(t) > 0.

Let us define some energy functionals for positive p € J;:
) 1 1
Ei'p) = —5 Tr(Okpdr), B o] := 5 Tr(zepar), (4.12)
with k,l =1,...,d. For p € D, the cyclicity of the trace implies
. d
E*Mp) =Y EfRlel, Ep) = Z Ei%lp] (4.13)
and, by a density argument, the formulas (4.13) also hold for p € &.
Step 1: We apply the operators zy, O (from left and right) to (3.1) and take

traces. A lengthy but straightforward calculation, using the cyclicity of the
trace and setting w.r.o.g. Tr p(t) = 1, yields for the kinetic energy:

: d M
2 % Bk =3 Z Z ol = 4’"2 Bt =2 > ) Re(oiBi) EXY'

k=1 k=1 j=1 k=1 j=1
d M
— 3 63 Im(oaw77) Te(Owpm) + I, 7) Te(p04)
=1 j

k 1
fd &
+i (5 + ;Tr(akp:ck)> . (4.14)

For the external energy we obtain:

IBJ,k|2 + 4N2Emt +2 Z ZRe a],kﬂ.h Ekl

d M
k=1 k=1 j=1 k=1 k=1 j=1
d M

)=
&|Q‘
||
t\DI»—l

m(;, kﬁ]l Tr(Okpz1) + Im(B;,17;) Tr(pz)

—i <g +y Tr(akpxk)) . (4.15)
k=1

Step 2: These equations are not closed in EF* and E¢**. To circumvent this
problem, we shall use interpolation arguments: First, note that (Oypdx) € J,
iff (Or+/p) € Jo, cf. [ReSil]. Thus we can estimate

2 2 2
pdkllly < lllVelly [llvedkllly = llpllly [110kpdklll; -
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Likewise, we get

2 2 2
Mokpzallly < WOkv/pllly lvpillly = [110kpBkllly [llzzpzdlll,

and one easily derives analogous estimates for the off-diagonal energy-terms

Ez’mlt/ kn  Hence, estimating term-by-term in (4.14), (4.15), we finally obtain

d

&S B+ Bl < K Y(EED + BEDp(0)
k=1 k=1

U

with some generic constant K > 0. Applying Gronwall’s lemma then gives the
desired result. O

This lemma directly leads to our next proposition:

Proposition 4.4. Assume that po € £ and Vi € L®(R?) s.t. additionally
VVi € LA(R?), for some 3 < q < co. Then

®4(po) € C([0,00),E), Vt>0, (4.16)
where ®;(po) denotes the unique linear QDS corresponding to (3.1).

Proof. The proof is based on a generalization of Griimm’s theorem. As in the
proof of lemma 4.3 above, we only consider, w.r.o.g., the case p(t) > 0.

Step 1: At first, we shall prove that for all f, g € L2(R?) and s > 0,
lm(f, vV =Ap(t)V=Ag) + ([, |zlp(t)[2|g) = {f,V=Ap(s)V—Ag)
+ (/. lz|p(s)[z]g), (4.17)

where (-, -) denotes the standard L?(R?) scalar product.

To this end we choose two sequences { f,}, {gn} € H'(R?)NL2(R?; (1+]|z|?)dz),

neN, st fn =3 f, gn =3 g in L2(R%) and write

(F. V=D (p(t) = p())V=2 g) = {fn, V=2 (p(t) — p(s))V=-A gy,)
+ (fns V=A (p(t) — p(s))V—=A (g — gn))
+{f = fn, V=2 (p(t) — p(s))V-A g).
(4.18)

Since p(t) € &4 we have |||[v/—Ap(t)vV—-Al||,, < K, for all |t — s| < to and thus
we can estimate for n € N large enough:

(= Fas V=B (p(t) = p()V=R )| < KIf = Full, llglle
(s V=B (0(8) = p(5)V=A (9 = 90)| < Kllg = gully [l £all>

Now choose an arbitrary € € R, and then m € N large enough, such that for
alln >m
”f - fn

3 3 g
ly < 27 g —gnlly < < -
2= 3K|lgll, "2 7 6K|flly, — 3K||fall2

Since this choice is independent of ¢ the second and the third term on the r.h.s.
of (4.18) are smaller than ¢/3.
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By assumption, we have /=Af,, v—Ag, € L?>(R?) and thus
W (fn, V=A (p(t) = p(3))V =4 gn) = Im{V=A frn, (p(t) = p(3))V=A gn)
=0,

where the last equality follows from the fact that p(t) € C([0,00), 1) (by the-
orem 3.9). In other words

(s V=B(p(0) = p())V=Bgn) < 3,

for |t — s| small enough. Since € was arbitrary, equation (4.17) is true and it

states that .
V-Ap(t)V-A =3 V-Ap(s)V-A,
in the weak operator topology.

Having in mind that p(t) € £ also implies ||| |z|p(t)|z| |||, < K, exactly the
same procedure can be applied to the second term of (4.17) and the assertion is
proved.

Step 2: Let V1 = 0 first. By theorem 2.20 in [Si] (a generalization of Grimm’s
theorem), step 1 and the continuity of

2B + B [p()] = IV=Bp0)V=4lll, + I lelo®)al Il
(cf. lemma 4.3) imply
lim [[[V=2 (p(t) = p(s)) V=Alll, + Il le| (o(8) = p(s)) [a] [ll, =0, Vs> 0.
Thus ~
(V=2p(t)V=A + [zlp(t)lz]) € C((0,00), Ji (L2 (RY)))

and the proposition is proved. The case V3 # 0 can now be included by a
standard perturbation result, cf. [Pa] under the additional assumption that
VVi € L1(R?), for some 3 < ¢ < 00, cf. [Ar] for the detailed calculations. O

As a remaining preparatory step, the following lemma, states an important prop-
erty of the nonlinear mean field potential ¢[p].

Lemma 4.5. Let p € £ and d = 3, then ¢[p] € L=(R3). Moreover, the operator
[9]p], p] is a local Lipschitz map from £ into itself.

Proof. In d = 3, we explicitly get from (2.14)

X

xnfp], Volp] = ol * nlp].

Blp] = ym

4|

Therefore, the Hardy-Littlewood-Sobolev inequality and the generalized Young
inequality, cf. [ReSi2], imply

¢lp] € L3, (R*) N LP(R?), 3<p<oo
as well as

Volp] € L32(R®) N LP(R®), 3/2<p < oo.



Quantum Dynamical Semigroups 18

Here, L? denotes the weak LP-spaces, cf. [ReSi2]. Hence, by a Sobolev imbed-
ding, @[p] € L>*°(R®). Using these estimates, lemma 3.11 of [Ar] shows that
[¢[p], p] is a local Lipshitz map in the kinetic energy space

Ekn = fpe Ty : V=ApV—A € 1} D E. (4.19)

Since both, the potential ¢[p] and the weight |z| in the functional E¢%![p] act
as multiplication operators, they commute and the local Lipshitz continuity in
& follows. O

We remark that the nonlinear map p — [¢[p], p] is continuous in £, but not in
J1(L?(R®)) and this is the reason why we need to work in the energy space
£. However, the linear evolution problem (3.1) in general does not generate
a contractive QDS on £ C Ji, except in the case of a unitary dynamic (i.e.
L; = 0). Hence, in order to obtain a global-in-time (nonlinear) existence and
uniqueness result, we can not apply the results of [AIMe], which would require
contractivity of the linear QDS in €.

In the nonlinear evolution problem (4.1) the situation is even worse. Already
in the case of a unitary time-evolution only E%![p(t)] is conserved (for pu =
0), whereas ||p(t)|| is not, due to the possible energy exchange between the
potential and the kinetic parts. Hence a unitary but self-consistent evolution
problem does not generate a contractive semigroup in & either.

With the above results, we are able to state the following local-in-time result:

Theorem 4.6. Let pg € £, d = 3 and V; € L®(R®) s.t. VVi € LI(R3), for
some 3 < q < 00, then:

(a) Locally in time, the nonlinear evolution problem (4.1) has a unique mild
solution ®,(po) € C([0,T),E), where ®;(-) denotes the nonlinear semigroup
obtained by perturbing the linear QDS with the Hartree potential. This self-
consistent potential satisfies: ¢ € C([0,T);Cy(R?)). The map po — ®:(po)
is Lipschitz continuous on some (small enough) ball {||p — polls < €} C &,
uniformly for 0 <t < Ty <T. Further, if the maximum time of existence T > 0
is finite, we have

lim ||® = 00. 4.2
tl/ng,ll t(po)llg = o0 (4.20)

(b) For L(po) € & we obtain a classical solution ®;(po) € C*([0,T),E).

(c) The semigroup ®, is conservative.

(d) The semigroup ®; is positivity preserving and contractive on Ji (L*(R?)).
Hence, it furnishes a nonlinear QDS: ®; : £ — £ C Jh.

Proof. Part (a, b): By proposition 4.4 the unique conservative QDS ®;, ob-
tained from theorem 3.9, also maps the energy space £ into itself. Lemma 4.5
and a standard perturbation result (cf. theorem 6.1.4 in [Pa]) then yield the
local-in-time existence of a solution for the nonlinear, i.e. mean field prob-
lem. The continuity of ¢ follows from the proof of lemma, 4.5, using ®;(po) €
C([0,T);E). The local Lipschitz continuity of the map po — ®4(po) follows
from theorem 6.1.2 in [Pa] and the uniform lower bound for the existence time
of trajectories ®;(p) that start in the neighborhood of pg (cf. proof of theorem
6.1.4 in [Pa)).

Part (¢): The proof follows from Duhamel’s representation, analogous to (3.26).
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Part (d): Having in mind the result of part (a), we consider the nonlinear evo-
lution problem (4.1) as a linear evolution problem with time-dependent Hamil-
tonian and write it in the following form:

p(0) = po > 0.

(4.21)

Here, ¢ € C([0,T);Cy(R?)) is the self-consistent potential ¢[p]. To prove the
assertions of part (d), we shall approximate ¢(¢) on [0,71], T1 < T, by the
piecewise constant potential:

O(t) = $(tn), tn<t<tnp, 0<n<N-—1,
with the uniform grid points: ¢, = nAt, At = Ty /N. Hence, p(t), t € [0,T1] is
approximated by oy € C([0,T1]; J1(L?(R?))), solving

d
%UN:—’L'[H,UN]-FA(UN)—i[ﬁ(t),UN], t>0,

on(0) =po > 0.

(4.22)

Since J(t) € Cy(R?), corollary 3.10 applies to the generator in (4.22) on each
time-intervall [t,,,tp+1]. In summary we have the following facts:

¢ is uniformly continuous on [0, T1] w.r.t. || - ||, the solutions of (4.21) satisfies:
llp®)]ll; < K, on 0 <t < T, and the propagator corresponding to (4.22) is
contractive on J; (L2(R?)).

With these ingredients it is standard to verify that

lim oy = p, in C([O;TI]QLZ(L2(R3)))5

N—oo

cf. the proof of theorem 1 in [AIMe] e.g.. Hence, the positivity of p(t) = ®;(po)
follows from the positivity of on(t).

Analogously, the contractivity of the propagator corresponding to (4.22) implies
the contractivity of ®;(pg) in Ji (L?(R?)). O

Remark 4.7. If no confinement potential is present and Im(a;r®;;) = 0,
Vj,k,1, then theorem 4.6 also holds in the kinetic energy space £¥". In partic-
ular, this is true for the QFP equation, where one can derive an exact ODE for
the kinetic energy, cf. [ALMS].

In the next section we shall derive a-priori estimates on ®;(p) to prove the
global-in-time existence of a conservative QDS for the mean field problem.

5 A-priori estimates and global existence of the
mean field QDS

From theorem 4.6, we already know that |||p(¢)|||; = |l|polll;, for 0 < ¢ < T.
It remains to prove an a-priori estimate on the energy of the nonlinear system.
As a preliminary step, we introduce a generalized version of the Lieb- Thirring
inequality:
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Lemma 5.1. Assume d = 3 and let p € Jy, p > 0 be s.t. E¥"[p] < oo. Then
the following estimate holds:

0 ki -
Infelll, < Kplllolll, B [p)'~", 1<p<3, (5.1)
with
3-p
= 2
0:= (52)
Proof. The proof is given in the appendix of [Ar], cf. also [LiPal. O

In the sequel this estimate will be used to derive an a-priori bound for the total
energy.

Proposition 5.2. Assume pg € £, po > 0 and d = 3. Then there exists a
K > 0 such that

E"!p(t)] < eXUE*'pg], 0<t<T, (5.3)

where p(t) := ®4(po), denotes the unique local-in-time solution of the nonlinear
evolution problem (4.1).

Proof. Since ®, is positivity preserving, we assume w.r.o.g. po > 0 and hence
have p(t) > 0, for all 0 < ¢t < T. The idea is again to derive a differential
inequality for E*°t. We first consider a classical solution ®;(po) € C*([0,T),£)
obtained from an initial condition with L(po) € €.

Step 1: We calculate the time derivative of the total energy, using the short
notation p = £ p:

d _or d 1 1 1d
GE1 = 5 T (=31V16IV1+ Glallel + 6ldlp) - 5 Te(6lolo)

- (—1|V|/>|V| + Llalplel + ol ) T (llp)

— =< (gl (5.4)

For our classical solution p(t) the calculation (5.4) is rigorous since ||p|le €
C'[0,T) and the self-consistent potential satisfies ® € C1([0,T); Cy(R?)).

In order to simplify the last term on the r.h.s. of (5.4) we evaluate the trace in
the eigenbasis of p (cf. (2.6)). This gives

1d
sq @lle) 2dt/ d(e

We now proceed as in [Ar]: Integrating by parts several times and using the
Poisson equation (2.13), we obtain

33 T = 55 [ IVolA@Pde = = [ dl@Aslsl@a

2dt
[ d@nlpl@)ds = Tt
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Inserting this into (5.4), we get

d
_Etot
preciild

1. 1 . .
T (=3 9191 + el + 61410

T (=3 IOV + FlalColel + L)) (53)

In the following, we shall derive a differential inequality for E*![p] from (5.5).
This expression is now considerable easier to deal with, since the self-consistent
potential enters as if it was an additional external field (note that the factor 1/2
in front of @[p] has been eliminated).

Step 2: Similarly to the proof of lemma 4.3, we introduce an energy-functional
1
Ele) = B el + Bl + 3Bl ki1=1,2,3,

where E,’jfl", E,‘;flt are defined as in (4.12). Again, for all p € D, we have

Etot [P] Z Etot

and, by a density argument, this carries over to p € £. After some lengthy, but
straightforward calculations (with extensive use of the cyclicity of the trace),
we get from (5.5), the following equation:

3

d d 3 ) . 3
S Eist= | Z > Bk - S TH(@Edl)p + Besl) k)

k=1 k=1 k=1 j=1

Z B+ 2ip Z Tr(zx pOrd[p))

k=1

—i Yy > Im(agxBi) Tr(zkpdidlp])
k=1 j=1
3 M
— iy > In(T8;k) Te(pdrglp)- (5.6)

k=1 j=1

E

Note that the first term of the r.h.s. of (5.6) — in big brackets — equals the
time derivative of E,’c“,? under the linear time-evolution. It is given by (4.14).
On the other hand, one easily checks that the time derivative of E”jf under
the nonlinear time- evolutlon is equal to the linear one, hence given by (4.15).
Since these kinetic and the external (potential) energy terms can be treated (by
interpolation arguments) as in the proof of lemma 4.3, it remains to estimate
the last three terms on the r.h.s. of (5.6).

Keep in mind, that we want to use a Gronwall lemma, in the end. Hence, we
need to find appropriate linear bounds for the r.h.s. of (5.6). (In the following
we shall denote by K positive, not necessarily equal, constants.)

Step 3: We first consider the term Tr(pdx[p]):
In order to calculate the trace, we need to guarantee that pdy¢[p] € J1. Using
the Sobolev inequality we estimate for ¢ € L?(R®):

10V + D)7 ells < KI(VI+ D) el < K llell,,
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since ||(|V|+1I) - ||, is an equivalent norm to || - || .. Holder’s inequality and
the bounds obtained in the proof of lemma (4.5) then imply

1@l (V] + D)™ olly < lI0kdlallls 11V + 1)~ pllg
< K||0slpllls [lello-
In other words, (Ox¢[p])(|V|+1I)~! is a bounded operator on L?(R?) and we get
o3k elpllll, < 1l @l (V] + D llo I (V] + Dpllly
< K||oeelplll (B*"[o] + lllelll;)-

Thus pdxolp] € J1, so we can calculate its trace in the eigenbasis of p and
estimate it:

| Tr(p0k ¢lp])| = ‘/RS O dlpl(@)n[p](z)dz| < [IVe[]ll; [Infe]ll,-
The generalized Young inequality and the Lieb-Thirring inequality (5.1) imply
IV@lplll, < Klinlpllla/s < KlllolIF* B4 [o]'/*. (5.7)
Further, using again (5.1), we have
Infellly < K|llplll;* E*m[p]?/4.
Hence, we obtain the following estimate:

| Te(pdx )| < Klllplll, E*[o], (5.8)

which is suitable for our purpose, due to the linear dependence on E*™"[p].
Step 4: Next, we need to estimate the term

3
> &k Te(zrpdiglp)),

k=1
with the short-hand & ; := Im(a; x/3;,).

To guarantee that xxp0;¢[p] € J1, we only need to show /pd;¢[p] € Ja, since
we already know zp,/p € J2. This can be done as in step 3 above by noting
that /p(|V|+1I) € J2 and (V| + I)719;¢[p] € B(L*(R?)).

Hence, we can again calculate Tr(zyp0;¢[p]) in the eigenbasis of p:

3 3
> 6 eCanpdole) = Y- s [ O00lpl(@) nlpl(o)is

k,l=1 k=1 R

= = 3 G [ 200l@) % dlAla)do,

k,l,m=1

(5.9)

where we have used the Poisson equation (2.13) for the last equality. Integration
by parts gives

3 3
> & Trawpduolpl) = Y- 6t [ 28lole) dolpl(a)do

k=1 k=1
3
+ Y G [ 010 olhl(@) nelpl(@)da.
k,,m=1 R3

(5.10)
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Adding the equations (5.10) and (5.9) yields, after another integration by parts:

3
2 Z €k, Tr(zy p 019p))
k=1
3 3
=3 6 [ A00kbde Y G [ 100005t — 21016020 d] do
k=1 R? kl,m=1 R?
3

= &k /R3 019 O du

k=1

3
- Z Ek,l / [(sk,m 6l2,m¢ + Ty 6,3,m’m¢ — 5k,l afn,m(ﬁ — T 6l3,m,m¢] ¢dx
R3

k,l,m=1
3 3

=2 Y G [ 0dodo— Y G [ 10n0P do, (5.11)
k=1 R3 k,m=1 R3

where we write ¢ = ¢[p] for simplicity and denote by dj,; the Kronecker symbol.
Therefore we can estimate

3
Y ea Te(@paigle]) | < K|IV[o]lls,

k=1

where K depends on the coeflicients & ;.
Hence, using the same estimates as in (5.7), we have

3
> & Te(erpdidlo)| < K |l|olllS* EF[o]/?
k=1

< K lollly (llelll, + E*"[o]) ,

which is the desired linear bound.
The third term in (5.6) can be treated analogously to the previous case.

Step 5: The steps 1-4, together with the estimates obtained in the proof of
lemma 4.3, imply

d tot tot

SEp(0)] < KE®[p(t)), 0<t<T, (5.12)
with some generic constant K > 0. Applying Gronwall’s lemma then proves the
assertion.

Strictly speaking, all the calculations of steps 2 — 5 first have to be done for an
approximating sequence {o,,} C Do, such that o,, "= p(t) in £ for each fixed
t € [0,T) (cf. the proof of theorem 3.9). The estimate (5.12) then also holds for

the limit p(t) since the constant K is independent of {0, }.

Step 6: So far we have proved (5.3) for classical solutions. By theorem 4.6(a) any
mild solution (i.e. ®;(po) € C([0,T),&)) can be approximated in £ (uniformly
on 0 <t <T; <T) by classical solutions. Hence (5.3) carries over to all initial
conditions py € £ with pg > 0. O
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In view of (4.20), and since [|p(t)||; < E®![p(t)] we conclude from the above
proposition that 7' = oo and obtain our main result:

Theorem 5.3. Let pp € £, d =3 and V; € L¥(R?) s.t. VV; € LY(R?), for
some 3 < q < o0:

Then, the nonlinear evolution problem (4.1 )~admits o unique mild solution, i.e.
it generates a nonlinear conservative QDS: ®4(py) € C([0,00),E).

6 Appendix: Proof of Lemma 3.7

Without loss of generality we can assume that p is a nonnegative operator. (Oth-
erwise one can split p into its positive and negative part [ReSil] and prove the
result separately for each one.) Its eigenvalues are A; > 0 and the eigenvectors
1; are orthonormal.

Part (a): For each p € .J; and the corresponding sequence {o,,} C Dy, defined
in (3.17), we need to show that

Jim {||p = onll, = 0.

Note that it is enough to prove the result for p € J1 with finite rank N € N,
since finite rank operators are dense in J1, cf. [ReSil]. With the kernel of
on € J1 as in (3.18), we get from (3.13), that for all f € L2(R?)

N
lim (0,f)(2) = lim 2;/\1' @i (@) /R 2in) W)y = (pf)(x)

]:
in L2(R?), i.e. the operators o,, — p in the strong operator topology. Since we
assumed that p has finite rank, we conclude from (3.19) that the trace norms

converge, i.e.
Jim{[lonll, = [llolll;-

Combining these two results, the theorem of Griimm (theorem 2.19 of [Si])
implies that o, = p in J;.

Part (b): The inclusion D(Z) C D(L) is already clear from proposition 3.6.
Thus it remains to show that for each o, € D,, C Dy, with some fixed n € N,
we have Z(oy,) € Ji:

First note that Z(o,) := Yo, + 0,Y* is a linear combination of the following
terms (and their adjoints)

TrOnTy, Ok0n0y, OxOn®i, TkTi0n, OxO10n, TrO10n, TkOn, Oron, (A.1)

where 1 < k,l < d and 8, := 8,,. (Indeed not all of this terms really appear in
the expression of Z, but since the same argument for £ is needed in the proof
of theorem 3.9, we shall consider this more general case.)

Since o, has a representation given by ¢, = M(x»)C(¢n)p C(pn)M(xn), for
some p € J1, we have to prove that the operator compositions z°V*M,,C,, are
in B(L?*(R?)). Here the multi-indices a,b € Ng are such that |a| + [b] < 2. As
an example we consider the operator z;0; and write for f € L%(R?):

(@r O MnCr f)(z) = 2k0i(Xn () (n * f)(z))
= zk[O1xn (2) (P * ) (@) + Xn(2)(Bron * [)(2)]-
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Since ¢, x € C§° (see the proof of lemma 3.3) we have that
||$kaanC’nf||2 < Kk,l,n||f||2
and hence 2,9, M,,C,, € B(L?*(R?)). Therefore x1,0;0, = x40 M,CppCpM, €

Ji. The other terms in (A.1) can then be handled in a similar way.

Part (c): After the proof of part (a) it remains to show that for all p € Ji with
L(p) € J1, the following statement holds:

Tim[[1£(on) = L)l = 0.

To simplify the proof, it is sufficient to consider a “model operator” K(p), for
which we choose I = k = 1 in (A.1) and further set all constants equal to
one. This simplification is possible since no cancellation occurs between the
individual terms of K(p). To simplify the notation further, we shall from now
on write v := 21, 0 := 0z,. We choose K in the form

K(p) = K1(p) + K1(p)*,
where
K1(p) = vpv + 0pd + Opv + v?p + 8*p + vp + vp + Dp.

The general (d - dimensional) case L(p) = —i[H, p] + A(p) described above is
then a straightforward extension. The proof now follows again in several steps:

Step 1: We write

K(on) = K(M(xn)C(on)p Clen)M(xn))
= M(xn)C(en)K(p) C(@n)M (xn) + Rn(p) + Ru(p)*.

Since K(p) € Ji, we can decompose it, cf. [ReSil] into

K(p) = K+(p) = K—(p),

with K4+ (p) > 0. Applying part (a) of this lemma then yields
Jim || M (xn)C(pn)K(p) M(xn)C(¢n) = K(p) [ll; = 0.

It remains to prove that R,(p) — 0 in Ji, as n — oo, which also implies
R,.(p)* = 0in J;. For technical reasons (which will become clear in step 3)
we split this remainder term into two parts: R, (p) = R.(p) + RZ(p), and treat
each of them separately.

Step 2: After some lengthy calculations, R} (p) can be written as

R, (p) = M (dxn)C(pn) p Clipn) M (dxn)
+ M(8*xn)C(pn) p C(on) M (xn)
+ M (xn)C(vpn)p Cpn) M (xn)
+ M(0xn)C(#n) pC(pn) M (Xn)
— M(xn)C(v*@n) pCn) M (xn)
—2M(xn)C(vpn) p C(vpn) M (Xn),
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where, on the level of the kernels, we have used several times the basic identity

o(f*g) =vf*g+ f*vg.

Now we calculate for f € L2(R?) (remember v = z1)

(Clorp @) = [ (o1=m) eule =) )y
=2 [ 0@ = ) elntz - ) f)dy = O (7).
Rd

n

Thus we have for the operator norm ||[C(ve,)lll, = O (n™'). Similarly we
obtain

1C(ea)lllee = 1M (xn)llloo = O(),

1M (0xn)lllo = O (n7)

NC@*en)llloe = 1M (*xn)lllo = O (n7%) -
With these relations we can estimate, using [||AB|||; < [||Alll [IIBlll;, cf.
[ReSil]

I RL(0) Ny < Mol 1M Cen) I IC (wen) 1%

+ lollly 11 Gen) 12 NC(n) oo NC @ @)l

+ el NC I NM @xn)l12,

+ lellly S 12 MM Oen)lll o 110X ) oo

+ ol NC ) oo 1M el 2 N C (veon) oo

+ ol NC ) N NM Ol 1M (D3n) o
=0(n").

Thus R (p) = 0 uniformly in J;, as n — oo.

Step 3: Again a lengthy, but straightforward calculation shows that the second
part of the remainder can be written in the form

R2(p) = M(ndxn)C(in) p C(P2%) M (x)
+ M(xn)C(a(wn)) pCpn)M (xn)

+ MO)O(P2) p Clpn) Mndra)
e

b M3 Cn) ) (% xn)

+ MO)C(22) p Clmpn) M (x2)

+ M(vdxn)C (wn)pC(wn) (xn)

+ 2 M) O(PE2) pC(pn) M (x)
+ M (- xa)Clpn) p Cnvipn) M ()
+ M(xa)C(nvpn) p Clepn) M ()

+ 2 M (= xn)C(n0n) p Ci0n) M (xn)-
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In contrast to step 2 these terms do not converge to zero uniformly in J;.
Therefore we need to proceed differently:
As an example we consider the ninth term on the right hand side and write

M (xn)C (nven)p C(‘pn)M(%Xn) = M(xn)C(nwn)pNC(cpn)M(%xn)

+ M) Cnvgn)(p = pV)C (o) M- xn),

where p" is the trace class operator p “cut” at finite rank N € N, such that
Il p=pNll; < e, e € Ry. Direct calculations, similar to the one in step 2,
imply

[IC(wen)lllee < K, 1M oxa)lll < K, K €R, (A.2)
with K independent of n € N. Thus we can estimate
v
1M (xn) C(nvgn)(p — p™) Clen) M (xn)llly < eK>. (A.3)
Define II to be the projector on ran(p’¥). Then p?v = IIp" and

1€ (o)™ llly < NIC(nven) Tl ™Iy (A.4)

Now, since dim(ran(p’V)) < oo and since strong convergence equals uniform
convergence on finite dimensional spaces [ReSil], we get

Tim_[|C(nug,) ]|, = 0. (A.5)

Here we used the fact, that C(nvyp,)f — 0 in L2(R?), for all f € L?(R?).
Combining (A.2) - (A.5) we thus have

. v

lim [||M (xn) C(nven)p™ Clen)M(=xn)lll, = 0. (A.6)

n—oo n
Combining (A.3) and (A.6) shows that

v

1M (xn) Cnvgn)p Clon) M (xn)lll,
can be made arbitrarily small for NV sufficiently large. All other terms appearing
in the expression of RZ can now be treated in the same way:

The definitions of ¢, and x, imply that all the distributions nvp,,, %&pn and
d(vepy,) converge to zero in D'(R?). Further we have

()
n ) |zl

i (5)

n|z| n

is in L*°(R*) uniformly for n € N with support in the annulus 2 < |z| < n.
Also 2, is uniformly in L=(R?) with

|n6Xn| = <K,

by assumption. Similarly

[vOxn| =

. 1 _
Jim {|n™ oxnl| g (Bgy = 0
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on each ball of radius R. Thus we have strong convergence on ran(p’¥) for each
term of RZ.

In summary we have proved in steps 1 to 3 the assertion of the lemma. O
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