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Abstract

This paper is devoted to refinements of convex Sobolev inequalities in the case of
power law relative entropies: a nonlinear entropy–entropy production relation im-
proves the known inequalities of this type. The corresponding generalized Poincaré
type inequalities with weights are derived. Optimal constants are compared to the
usual Poincaré constant.
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1 Introduction and main results

In this paper, we consider convex Sobolev inequalities relating a (non-negative) convex
entropy functional

eψ(ρ|ρ∞) :=
∫

Rn

ψ
( ρ

ρ∞

)
dρ∞

to an entropy production functional

Iψ(ρ|ρ∞) := −
∫

Rn

ψ′′
( ρ

ρ∞

)
D

∣∣∣∣∇( ρ

ρ∞

)∣∣∣∣2 dρ∞ , (1.1)

where ρ and ρ∞ belong to L1
+(Rn, dx) and satisfy ‖ρ‖L1(Rn) = ‖ρ∞‖L1(Rn) = M > 0.

Here we use the notation dρ∞ = ρ∞(x) dx. The generating function ψ : R
+
0 → R

+
0 of

the relative entropy is strictly convex and satisfies ψ(1) = 0.
A very efficient method to prove convex Sobolev inequalities has been developped by

D. Bakry and M. Emery [3, 4] in probability theory and by A. Arnold, P. Markowich,
G. Toscani, A. Unterreiter [2] in the context of partial differential equations. See [1] for
a recent review. The main idea goes as follows: We consider ρ = ρ(x, t) depending now
on the auxiliary variable t > 0 (“time”). For any solution of
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∂ρ

∂t
= div

(
D ρ∞∇

( ρ

ρ∞

))
, x ∈ R

n, t > 0 , (1.2)

the time evolution of the relative entropy is given by the entropy production:

d

dt
eψ(ρ(t)|ρ∞) = Iψ(ρ(t)|ρ∞) ≤ 0 .

In (1.1) and (1.2) D = D(x) denotes a (positive) scalar diffusion coefficient, and we
assume D ∈ W 2,∞

loc (Rn). It is also clear that ρ∞(x) is a steady state solution of (1.2).
For D ≡ 1, the main assumption is that A := − log ρ∞ is a uniformly convex function,

i.e.

(A1)

λ1 := inf
x∈Rn

ξ∈Sn−1

(
ξ,

∂2A

∂x2
(x) ξ

)
> 0 .

For D �≡ 1 the corresponding assumption reads:

(A2) ∃λ1 > 0 such that for any x ∈ R
n

(1
2
− n

4

) 1
D
∇D ⊗∇D +

1
2
(ΔD −∇D · ∇A)II

+D
∂2A

∂x2
+

1
2

(
∇A ⊗∇D + ∇D ⊗∇A

)
− ∂2D

∂x2
≥ λ1II

(in the sense of positive definite matrices). Here II denotes the identity matrix. In these
two cases, one can prove the convex Sobolev inequality

eψ(ρ|ρ∞) ≤ 1
2λ1

|Iψ(ρ|ρ∞)| ∀ρ ∈ L1
+(Rn) with ‖ρ‖L1(Rn) = M (1.3)

by computing

Rψ(ρ(t)|ρ∞) :=
d

dt

[
Iψ(ρ(t)|ρ∞) + 2λ1eψ(ρ(t)|ρ∞)

]
and proving that

Rψ(ρ(t)|ρ∞) ≥ 0 . (1.4)

Integrating this differential inequality from t to ∞ then yields (1.3).
Actually, these calculations can only be carried out only for admissible relative en-

tropies where ψ ∈ C4(R+) has to satisfy

2 (ψ′′′)2 ≤ ψ′′ ψIV on R
+.

Typical and the most important – for practical applications – examples are generating
functions of the form

ψp(σ) = σp − 1 − p (σ − 1) for p ∈ (1, 2] , (1.5)

and
ψ̃1(σ) = σ log σ − σ + 1 ,
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which corresponds to the limiting case of ψp/(p− 1) as p → 1. With ψ = ψ̃1, Inequality
(1.3) is exactly the logarithmic Sobolev inequality found by L. Gross [8, 9], and generalized
by many authors later on.

Analyzing the precise form of Rψ(ρ|ρ∞) allows us to identify cases of optimality
of (1.3) under the assumption D ≡ 1. For p = 1 or 2, and for potentials A that are
quadratic in at least one coordinate direction (with convexity λ1) there exist extremal
functions ρ = ρex �= ρ∞ such that (1.3) becomes an equality, cf. [2]. Some of these
optimality results were already noted by E. Carlen [6], M. Ledoux [12], and G. Toscani
[14].

The non-optimality of the other cases may have two reasons: either λ1 from (A1),
(A2) is not the sharp convex Sobolev constant (an example for this is A(x) = x4, x ∈ R:
see §3.3 of [2]), or there exists no extremal function to saturate (1.3), even for the sharp
constant λ1. This happens for the entropies with p ∈ (1, 2), and it is due to the fact
that the linear relationship of |Iψ| and eψ is then not optimal.

A refinement of (1.3) for p ∈ (1, 2) is the topic of this paper. In this case, the
non-optimality of (1.3) stems from the fact that, for any fixed D and ρ∞,

J(e, e′,M) := inf
Iψ(ρ|ρ∞) = e′, eψ(ρ|ρ∞) = e

ρ ∈ L1
+(Rn), ‖ρ‖L1(Rn)=M

Rψ(ρ|ρ∞)

is a positive quantity for e > 0 and e′ ≤ −2λ1e. Here, the t-derivatives entering in Rψ

are defined via (1.2). Our main result is based on a lower bound for J(e, e′,M):

J(e, e′,M) ≥ 2 − p

p
· |e′|2
M + e

,

which yields an improvement of (1.3). Finding the minimizers of J (if they exist) is
probably difficult.

Theorem 1 Let ρ∞ satisfy (A2) for some λ1 > 0, and take ψ = ψp for some p ∈ (1, 2).
Then

k(e) = k

(∫
Rn

ψ
( ρ

ρ∞

)
dρ∞

)
≤ 1

2λ1

∫
Rn

ψ′′
( ρ

ρ∞

)
D

∣∣∣∣∇( ρ

ρ∞

)∣∣∣∣2 dρ∞ =
1

2λ1
|I| (1.6)

holds for any ρ ∈ L1
+(Rn) with

∫
Rn ρ dx =

∫
Rn ρ∞ dx = M , where

k(e) :=
M

1 − κ

(
1 +

e

M
−

(
1 +

e

M

)κ)
, κ =

2 − p

p
.

We will show that there are still no extremal functions to saturate the refined convex
Sobolev inequality (1.6). Therefore it is not yet known whether the above functional
dependence of |Iψ| and eψ is optimal. But it improves upon (1.3) since we have

k(e) > e , ∀ e > 0 , (1.7)

and the best possible constants λ1 are shown to be independent of p (see Theorem 4).
Also, the presented method can be extended to the case λ1 = 0 (see Proposition 3

below), thus giving a decay rate of t �→ Iψ(ρ(t)|ρ∞) for any solution ρ of (1.2), even
if A is not uniformly convex. We remark that nonlinear entropy–entropy production
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inequalities, or “defective logarithmic Sobolev inequalities,” have been derived for the
logarithmic entropy (i.e. ψ = ψ̃1) and Gaussian measures ρ∞ (cf. §1.3, §4.3 of [13]).

Next we consider reformulations of the convex Sobolev inequalities (1.3) and (1.6).
We assume M = 1 and substitute

ρ

ρ∞
=

|f |
2
p∫

Rn |f |
2
p dρ∞

(1.8)

in (1.3) to obtain the generalized Poincaré inequalities derived by W. Beckner for Gaus-
sian measures ρ∞ in [5] and generalized in [2] for log-convex measures:

p

p − 1

[∫
Rn

f2 dρ∞ −
(∫

Rn

|f |2/p dρ∞

)p]
≤ 2

λ1

∫
Rn

D|∇f |2 dρ∞ (1.9)

for all f ∈ L2/p(dρ∞), 1 < p ≤ 2. In the limit p → 1 this yields the logarithmic Sobolev
inequality: ∫

Rn

f2 log

(
f2

‖f‖2
L2(dρ∞)

)
dρ∞ ≤ 2

λ1

∫
Rn

D|∇f |2 dρ∞ (1.10)

for all f ∈ L2(dρ∞). Hence, (1.9) interpolates between the (classical) Poincaré and the
logarithmic Sobolev inequalities. A discussion on the interplay between (1.9), (1.10)
and additional inequalities “between Poincaré and log. Sobolev” can be found in [11]
and in §3 below. In [12] such interpolation inequalities are discussed for the Ornstein–
Uhlenbeck process on R

n and for the heat semigroup on spheres.
Using the transformation (1.8) on the refined Sobolev inequality (1.6) directly yields

a refinement of (1.9), which is nothing else than a reformulation of (1.6):

Theorem 2 Let ρ∞ satisfy (A2) for some λ1 > 0 and assume that
∫

Rndρ∞ = 1. Then

1
2

(
p

p − 1

)2
[∫

Rn

f2 dρ∞ −
(∫

Rn

|f |2/p dρ∞

)2(p−1)

·
(∫

Rn

f2 dρ∞

) 2
p
−1

]

≤ 2
λ1

∫
Rn

D|∇f |2 dρ∞ (1.11)

holds for all f ∈ L2/p(dρ∞), 1 < p ≤ 2 and the limit p → 1 again yields (1.10).

Note that the left hand sides of (1.9) and (1.11) are related by

1
2

(
p

p − 1

)2
[∫

Rn

f2 dρ∞ −
(∫

Rn

|f |2/p dρ∞

)2(p−1)

·
(∫

Rn

f2 dρ∞

) 2
p
−1

]

≥ p

p − 1

[∫
Rn

f2 dρ∞ −
(∫

Rn

|f |2/p dρ∞

)p]
(1.12)

as a consequence of (1.7) and (1.8). This can of course be recovered using Hölder’s
inequality: (∫

Rn

|f |2/p dρ∞

)p

≤
∫

Rn

|f |2 dρ∞ (1.13)
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and the inequality: 1
2

p
p−1(1− t

2
p
(p−1)) ≥ 1− t for any t ∈ [0, 1], p ∈ (1, 2]. Note that the

equality holds in (1.12) if and only if 1 = t =
(∫

Rn |f |2/p dρ∞
)p (∫

Rn |f |2 dρ∞
)−1, i.e. if

f is a constant.
For p = 2, (1.9) and (1.11) hold without absolute values, cf. [2], provided ψ2(σ) =

σ2 − 1 − 2(σ − 1) is defined over the whole real line. In that case, ρ is allowed to take
negative values.

In the next section, we shall prove Theorems 1 and 2 and exploit the method in
the case λ1 = 0. Further results on best constants, perturbations and connections with
Poincaré inequalities are presented in Section 3.

2 Convex Sobolev inequalities for power law entropies

Here and in the sequel we shall assume for simplicity that∫
Rn

ρ∞ dx = M = 1 .

The general case M > 0 then immediately follows by scaling.

Proof of Theorem 1. Since the first part of the proof is identical to §2.3 of [2] we
shall not go into details here. After a sequence of integrations by parts, dIψ/dt can be
written as

d

dt
Iψ(ρ(t)|ρ∞)

= 2
∫

Rn

ψ′′(μ)D

[
u�∇⊗ (∇AD −∇D)u

+
1
2

Δ D|u|2 − 1
2
|u|2∇D · ∇A +

1
D

2 − n

4
(u · ∇D)2

]
dρ∞ (2.1)

+
∫

Rn

[
ψIV(μ)D2|u|4 + ψ′′′(μ)(4D2u�∂u

∂x
u + 2D|u|2∇μ · ∇D)

+ 2ψ′′(μ)
∑
i,j

(
D

∂2μ

∂xi∂xj
+

1
2

∂D

∂xi

∂μ

∂xj
+

1
2

∂μ

∂xi

∂D

∂xj
− 1

2
δij∇D · ∇μ

)2
]
dρ∞ ,

where we used the notation μ = ρ
ρ∞

and u = ∇μ. Using (A2), the first integral of (2.1)
can be estimated below by −2λ1Iψ(ρ(t)|ρ∞). In the second integral, we now insert ψp

from (1.5) and write it as a sum of squares. This is the key step in our analysis, where
we deviate from the strategy of [2] by using a sharper estimate:

d

dt
Iψ(ρ(t)|ρ∞) ≥ −2λ1 Iψ(ρ(t)|ρ∞) + p(p − 1)2(2 − p)

∫
Rn

μp−4D2|u|4 dρ∞

+ 2p(p − 1)
∫

Rn

μp−2
∑
i,j

(
p − 2

μ
D

∂μ

∂xi

∂μ

∂xj
(2.2)

+ D
∂2μ

∂xi∂xj
+

1
2

∂D

∂xi

∂μ

∂xj
+

1
2

∂μ

∂xi

∂D

∂xj
− 1

2
δij∇D ·∇μ

)2

dρ∞

≥ −2λ1 Iψ(ρ(t)|ρ∞) + p(p − 1)2(2 − p)
∫

Rn

μp−4D2|u|4 dρ∞ .
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In the two limiting cases p = 1 (replace ψp by ψ̃1) and p = 2, the second term on the
r.h.s. of (2.2) disappears. In [2], this term was always disregarded. For 1 < p < 2,
however, it makes it possible to improve (1.3).

Using the Cauchy-Schwarz inequality, we have the estimate(∫
Rn

μp−2D|u|2 dρ∞

)2

≤
∫

Rn

μp−4D2|u|4 dρ∞ ·
∫

Rn

μp dρ∞

=
∫

Rn

μp−4D2|u|4 dρ∞ ·
∫

Rn

[ψ(μ) + 1] dρ∞

and hence ∫
Rn

μp−4D2|u|4 dρ∞ ≥
(

Iψ(ρ|ρ∞)
p(p − 1)

)2

· [eψ(ρ|ρ∞) + 1)]−1 .

With the notation e(t) = eψ(ρ(t)|ρ∞), we get from (2.2)

e′′ ≥ −2λ1e
′ + κ

|e′|2
1 + e

. (2.3)

From (2.3) we shall now derive

|e′| = −e′ ≥ 2λ1 k(e) , (2.4)

which is the assertion of Theorem 1. We first note that both Iψ(ρ(t)|ρ∞) and eψ(ρ(t)|ρ∞)
decay exponentially with the rate −2λ1. This follows, respectively, from (1.4) and from
the usual convex Sobolev inequality (1.3).

The function

k(e) =
1

1 − κ

(
1 + e − (1 + e)κ

)
is the solution of

k′ = 1 + κ
k(e)
1 + e

, k(0) = 0 .

Let

y(t) =
[
e′(t) + 2λ1 k(e(t))

]
· e−κ

∫ t
0

e′(s)
1+e(s)

ds
.

For any t ≥ 0, we calculate

y′(t) =
(

e′′(t) + 2λ1e
′(t) − κ

|e′(t)|2
1 + e(t)

)
· e−κ

∫ t
0

e′(s)
1+e(s)

ds
.

Since

|y(t)| ≤ |e′(t) + 2λ1 k(e(t))| · e−κ
∫ t
0 e′(s) ds = |e′(t) + 2λ1 k(e(t))|e−κ[e(t)−e(0)] → 0

as t → +∞, we conclude that y(t) ≤ 0, which proves (2.4). �

As we had to expect, one recovers the usual convex Sobolev inequality (1.3) in the
limiting cases p = 1 (take the limit p → 1 after dividing (1.6) by p − 1) and p = 2 (this
gives κ = 0 and k(e) = e).

For 1 < p < 2, we notice that 1
1−κ e > k(e) > e for any e > 0, but

lim
e→0+

k(e)
e

= 1 .

Hence, the estimate of Theorem 1 does not improve the asymptotic convergence rate of
the solution of Equation (1.2) except for λ1 = 0:
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Proposition 3 With the above notations, let λ1 = 0 and 1 < p < 2. Any solution of
Equation (1.2) satisfies

|Iψ(ρ(t)|ρ∞)| ≤ I0

1 + αt
∀ t > 0

with I0 = |Iψ(ρ(0)|ρ∞)| and α = κ I0
1+eψ(ρ(0)|ρ∞) .

Proof. Inequality (2.3) can be rewritten in the form

− |e′|′
|e′|2 ≥ κ

1 + e
≥ κ

1 + e(0)
,

thus proving the result. �

Next we address the question of saturation of the refined convex Sobolev inequality
(1.6), for simplicity only for the case D ≡ 1. Using the strategy from [2] we rewrite
(2.1) as

e′′ = −2λ1e
′ + κ

|e′|2
1 + e

+ rψ(ρ(t)) ,

where the remainder term is

rψ(ρ(t))

= 2
∫

Rn

ψ′′(μ)u�
(

∂2A

∂x2
− λ1II

)
u dρ∞

+ 2 p(p − 1)
∫

Rn

μ2−p
∑
i,j

(
∂zi

∂xj

)2

dρ∞ (2.5)

+
p(p − 1)2(2 − p)

e + 1
·
[ ∫

Rn

μpdρ∞ ·
∫

Rn

μp−4|u|4dρ∞ −
(∫

Rn

μp−2|u|2dρ∞

)2]
≥ 0 ,

with the notation z = μp−2∇μ. Using the notation from the proof of Theorem 1, we
have

y′(t) = rψ(ρ(t)) e
−κ

∫ t
0

e′(s)
1+e(s)

ds
,

and an integration with respect to t gives

−y(0) = |e′(0)| − λ1 k(e(0)) =
∫ ∞

0
rψ(ρ(t)) e

−κ
∫ t
0

e′(s)
1+e(s)

ds
dt ≥ 0 .

Hence we conclude that (2.4) becomes an equality, for ρ = ρ(0), if and only if the
remainder vanishes along the whole trajectory of ρ(t), i.e.

rψ(ρ(t)) = 0 , t ∈ R
+ a.e.

However, no extremal function can simultaneously annihilate the second integral and
the square bracket of (2.5): to make the second integral vanish, the function μ has to
be of the form μ(x) = (C1 + C2 · x)

1
p−1 (whenever μ(x) �= 0), and for the last term it

would have to be μ(x) = eC1+C2·x. Hence, (2.4) does not admit extremal functions.
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3 Further results and comments

In the previous sections we derived convex Sobolev inequalities (corresponding to power
law entropies) for steady state measures ρ∞ = e−A(x), whose potential A(x) satisfies the
Bakry–Emery condition (A2). However, such inequalities hold also in much more general
situations: As soon as ρ∞ gives rise to a (classical) Poincaré inequality (cf. (3.1) below),
convex Sobolev inequalities of type (1.3), (1.6), (1.9), and (1.11) hold for p ∈ (1, 2]. Note
that this condition is much weaker than the assumption (A2).

3.1 Spectral gap, Poincaré and convex Sobolev inequalities

Using the Poincaré constant

Λ2 := inf
w ∈ D(Rn)

w �≡ 0,
∫

Rn w dρ∞ = 0

∫
Rn D|∇w|2 dρ∞∫

Rn |w|2 dρ∞
(3.1)

we shall now give an estimate on the sharp constant in the refined Sobolev inequality
(1.6) and its reformulation (1.11):

Theorem 4 Let D = D(x) > 0 and assume that ρ∞ ∈ L1
+(Rn) with

∫
Rn ρ∞ dx =:M =1

is such that Λ2 > 0. Then, refined convex Sobolev inequalites of type (1.6) hold for any
p ∈ (1, 2]. And the optimal constant

Λp :=
1
2

inf
ρ∞�≡ρ∈L1

+(Rn)∫
Rn ρ dx=M

∣∣Iψp(ρ|ρ∞)
∣∣

k
(
eψp(ρ|ρ∞)

)
satisfies the estimate

4
(p − 1

p

)2
Λ2 ≤ Λp ≤ Λ2. (3.2)

Proof. The r.h.s. of this inequality is proved by contradiction: Assume that Λp > Λ2 and
substitute ρ

ρ∞
= |f |2/p

(∫
Rn |f |2/p dρ∞

)−1
(cf. (1.8)). A standard linearization argument

(put f2 = 1 + εw and take the limit ε → 0) then implies a Poincaré inequality with the
constant Λp which would contradict the sharpness of Λ2 in (3.1).

For the l.h.s. of inequality (3.2) we estimate (using twice Jensen’s inequality and
then the Poincaré inequality):∫

Rn

f2 dρ∞ −
(∫

Rn

|f |
2
p dρ∞

)2(p−1) (∫
Rn

f2dρ∞

) 2−p
p

≤
∫

Rn

f2 dρ∞ −
(∫

Rn

f dρ∞

) 2
p
2(p−1) (∫

Rn

f dρ∞

)2 2−p
p

≤ 1
Λ2

∫
Rn

D|∇f |2 dρ∞.

This reformulation of (1.6) (just like in (1.11)) shows that 4
(

p−1
p

)2
Λ2 ≤ Λp. �

Next we shall show that the validity of a logarithmic Sobolev inequality implies the
convex Sobolev inequalies (1.9) and (1.11). Part (i) of the following corollary is mainly
due to Lata�la and Oleszkiewicz (Corollary 1 of [11]), with an improved constant for
3
2 < p < 2.
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Corollary 5 Let D(x) > 0 and let μ be a probability measure on R
d that gives rise to

a logarithmic Sobolev inequality:∫
f2 log

(
f2

‖f‖2
L2(dμ)

)
dμ ≤ 2

Λ1

∫
D|∇f |2 dμ ∀ f ∈ L2(dμ) . (3.3)

Then:

(i) a convex Sobolev inequality holds for any p ∈ (1, 2]:∫
f2 dμ −

(∫
|f |2/p dμ

)p

≤ min{2(p − 1), 1}
Λ1

∫
D|∇f |2 dμ ∀ f ∈ L2(dμ) .

(ii) a refined convex Sobolev inequality holds for any p ∈ (1, 2]:∫
f2dμ −

(∫
|f |

2
p dμ

)2(p−1) (∫
f2dμ

) 2−p
p

≤ 1
Λ1

∫
D|∇f |2dμ. (3.4)

Proof. The function p �→ α(p) := p log
(∫

|f |2/p dμ
)

is convex:

α′′(p) =
4
p3

(∫
|f |2/p (log |f |)2 dμ

) (∫
|f |2/p dμ

)
−

(∫
|f |2/p log |f | dμ

)2(∫
|f |2/p dμ

)2 ≥ 0 .

Thus p �→ eα(p) is also convex and

p �→ ϕ(p) :=
eα(1) − eα(p)

p − 1

is nonincreasing:

ϕ(p) ≤ lim
q→1

ϕ(q) =
∫

f2 log

(
f2

‖f‖2
L2(dμ)

)
dμ .

This proves that ∫
f2 dμ −

(∫
|f |2/p dμ

)p

≤ 2(p − 1)
Λ1

∫
D|∇f |2 dμ .

On the other hand, using the linearization from the proof of Theorem 4 for (3.3) and
using Hölder’s inequality,

(∫
f dμ

)2 ≤
(∫

|f |2/p dμ
)p

, we also get∫
f2 dμ −

(∫
|f |2/p dμ

)p

≤
∫

f2 dμ −
(∫

f dμ

)2

≤ 1
Λ1

∫
D|∇f |2 dμ .

Similarly, since the logarithmic Sobolev inequality (3.3) implies a classical Poincaré
inequality, (ii) follows directly from Theorem 4. �
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3.2 Holley-Stroock type perturbations

In Section 1 we presented the refined convex Sobolev inequality (1.6) for steady state
measures ρ∞ = e−A(x), whose potential A(x) satisfies the Bakry–Emery condition (A2).
We shall now extend that inequality for potentials Ã(x) that are bounded perturbations
of such a potential A(x). Our result generalizes the perturbation lemma of Holley and
Stroock (cf. [10] for the logarithmic entropy ψ1 and §3.3 of [2] for general admissible
entropies).

For our subsequent calculations it is convenient to rewrite (1.6) as

k

(∫
Rn

ψ

(
f2

‖f‖2
L2(dρ∞)

)
dρ∞

)
≤ 2

λ1

∫
Rn

f2

‖f‖4
L2(dρ∞)

ψ′′
(

f2

‖f‖2
L2(dρ∞)

)
D|∇f |2 dρ∞ ,

(3.5)
where we substituted

ρ

ρ∞
=

f2∫
Rn f2 dρ∞

.

Theorem 6 Assume that ψ = ψp with some 1 < p < 2 is a fixed entropy generator. Let
ρ∞(x) = e−A(x), ρ̃∞(x) = e−Ã(x) ∈ L1

+(Rn) with
∫

Rnρ∞dx =
∫

Rn ρ̃∞dx = M and

Ã(x) = A(x) + v(x) ,

0 < a ≤ e−v(x) ≤ b < ∞ , x ∈ R
n. (3.6)

Let the given diffusion D(x) be such that the convex Sobolev inequality (3.5) holds for all
f ∈ L2(dρ∞). Then a convex Sobolev inequality also holds for the perturbed measure ρ̃∞ :

1
ap−1

k

(
ap

b

∫
Rn

ψ

(
f2

‖f‖2
L2

)
dρ̃∞

)
≤ 2

λ1

∫
Rn

f2

‖f‖4
L2

ψ′′
(

f2

‖f‖2
L2

)
D|∇f |2 dρ̃∞ (3.7)

for all nontrivial f ∈ L2(dρ̃∞) = L2(dρ∞). Here ‖f‖2
L2 stands for ‖f‖2

L2(dρ̃∞).

Note that the normalization of ρ∞ and ρ̃∞ implies a ≤ 1 and b ≥ 1.

Proof. First we introduce the notations

χ(x) :=
f2(x)

‖f‖2
L2(dρ∞)

, χ̃(x) :=
f2(x)

‖f‖2
L2(dρ̃∞)

, γ :=
χ

χ̃
=

‖f‖2
L2(dρ̃∞)

‖f‖2
L2(dρ∞)

,

and because of (3.6) we have a ≤ γ ≤ b.
We adapt the idea of [10, 2] and define for a fixed f ∈ L2(dρ∞) the function

g(s) := sp

∫
Rn

ψ

(
f2

s

)
dρ̃∞ .

Since g attains its minimum at s = ‖f‖2
L2(dρ̃∞), by differentiating w.r.t. s, we have

‖f‖2p
L2(dρ̃∞)

∫
Rn

ψ(χ̃) dρ̃∞ = g(‖f‖2
L2(dρ̃∞)) ≤ g(‖f‖2

L2(dρ∞))

≤ b ‖f‖2p
L2(dρ∞)

∫
Rn

ψ(χ) dρ∞ ,

where we used the estimate (3.6).
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Using the monotonicity of k and Assumption (3.5), this yields:

k

(
γp

b

∫
Rn

ψ(χ̃) dρ̃∞

)
≤ k

(∫
Rn

ψ(χ) dρ∞

)
≤ 2

λ1

∫
Rn

f2

‖f‖4
L2(dρ∞)

ψ′′(χ)D|∇f |2 dρ∞ (3.8)

≤ 2
λ1

γp

a

∫
Rn

f2

‖f‖4
L2(dρ̃∞)

ψ′′(χ̃)D|∇f |2 dρ̃∞ ,

where we again used (3.6) in the last estimate.
Since γ/a ≥ 1, the convexity of k and k(0) = 0 imply:

γp

ap
k

(
ap

b

∫
Rn

ψ(χ̃) dρ̃∞

)
≤ k

(
γp

b

∫
Rn

ψ(χ̃) dρ̃∞

)
.

Together with (3.8), this finishes the proof. �

Note that a Holley–Stroock perturbation of the usual convex Sobolev inequality (1.3)
would lead – under the assumptions of Theorem 6 – to the inequality

a

b
2λ1 e ≤ |e′| (3.9)

(cf. [2]). Since
a

b
e <

1
ap−1

k

(
ap

b
e

)
∀ ap

b
e > 0 ,

Inequality (3.7) certainly improves (3.9).
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