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Abstract

This paper is devoted to refinements of convex Sobolev inequalities in the case of
power law relative entropies: a nonlinear entropy—entropy production relation im-
proves the known inequalities of this type. The corresponding generalized Poincaré
type inequalities with weights are derived. Optimal constants are compared to the
usual Poincaré constant.
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1 Introduction and main results

In this paper, we consider convex Sobolev inequalities relating a (non-negative) convex

entropy functional
p
ew(p’poo) ::/ ¢<—) dpoo
R Poo

to an entropy production functional

o) = [ (L)D[e (L] o )

poc »

where p and po belong to L} (R", dx) and satisfy [|p]l 1 gn) = [|pocllr@ny = M > 0.
Here we use the notation dpss = poo(z) dx. The generating function 1 : R(J)r — R(J)r of
the relative entropy is strictly convex and satisfies ¥(1) = 0.

A very efficient method to prove convex Sobolev inequalities has been developped by
D. Bakry and M. Emery [3, 4] in probability theory and by A. Arnold, P. Markowich,
G. Toscani, A. Unterreiter [2] in the context of partial differential equations. See [1] for
a recent review. The main idea goes as follows: We consider p = p(z,t) depending now
on the auxiliary variable t > 0 (“time”). For any solution of
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ot 0o

the time evolution of the relative entropy is given by the entropy production:

9 _ gy <Dpoov(i)), zER t>0), (1.2)

%%(P(t”/’w) = Iy(p(t)|poc) < 0.

In (1.1) and (1.2) D = D(x) denotes a (positive) scalar diffusion coefficient, and we
assume D € T/Vlifo(R") It is also clear that p(x) is a steady state solution of (1.2).

For D = 1, the main assumption is that A := — log p is a uniformly convex function,
ie.

(A1)

. 0?A
)\1 = zle%{f;l (5, @(TI)) f) >0.
Eesnfl

For D # 1 the corresponding assumption reads:
(A2) 3A; > 0 such that for any z € R"

1
5(AD = VD - VA

2A 1 82D
bl _Z s
o+ (VA QVD+VD® VA) > Ml

(%—%)%VD@VD +

+D

(in the sense of positive definite matrices). Here I denotes the identity matrix. In these
two cases, one can prove the convexr Sobolev inequality

1 .
ep(plp) < Fi- Iy (plpsc)l Vo € LY (R™) with [lpll sy = M (1.3)
by computing ;
Ry (p(t)lpoo) = — |1y (p(t)]poc) + 2A1eq(p(t)]poo)
and proving that
Ry (p(t)|pec) = 0. (1.4)

Integrating this differential inequality from ¢ to oo then yields (1.3).
Actually, these calculations can only be carried out only for admissible relative en-
tropies where ¢ € C*(R*) has to satisfy

2(¢///)2 < @Z)”@Z)IV on R+.

Typical and the most important — for practical applications — examples are generating
functions of the form

Yp(o0) =0 —1—-p(c—1) forpe(1,2], (1.5)

and

Pi1(oc)=clogo—o+1,
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which corresponds to the limiting case of ¥, /(p — 1) as p — 1. With ¢ = U1, Inequality
(1.3) is exactly the logarithmic Sobolev inequality found by L. Gross [8, 9], and generalized
by many authors later on.

Analyzing the precise form of Ry(p|poc) allows us to identify cases of optimality
of (1.3) under the assumption D = 1. For p = 1 or 2, and for potentials A that are
quadratic in at least one coordinate direction (with convexity A;) there exist extremal
functions p = pex # pPoo such that (1.3) becomes an equality, cf. [2]. Some of these
optimality results were already noted by E. Carlen [6], M. Ledoux [12], and G. Toscani
[14].

The non-optimality of the other cases may have two reasons: either A\; from (Al),
(A2) is not the sharp convex Sobolev constant (an example for this is A(z) = 2*, 2 € R:
see §3.3 of [2]), or there exists no extremal function to saturate (1.3), even for the sharp
constant A;. This happens for the entropies with p € (1,2), and it is due to the fact
that the linear relationship of |I,;| and ey, is then not optimal.

A refinement of (1.3) for p € (1,2) is the topic of this paper. In this case, the
non-optimality of (1.3) stems from the fact that, for any fixed D and poo,

J(e,e', M) = inf Ry (plpsc)
Ly(Plpsc) = €', ey(plpec) = €
p € LL(R™), [Ipllprr)y=nr

is a positive quantity for e > 0 and ¢’ < —2XAje. Here, the t-derivatives entering in Ry,
are defined via (1.2). Our main result is based on a lower bound for J(e, e, M):
2—p [P
J ) /a M)> —— —— )
(e e )2 P M +e

which yields an improvement of (1.3). Finding the minimizers of J (if they exist) is
probably difficult.

Theorem 1 Let p satisfy (A2) for some Ay > 0, and take ¢ = 1, for some p € (1,2).
Then

2
P 1 n( P p 1
kie) =k — ) dpso | < — — D — dpoo = — |1 1.6
holds for any p € L1 (R™) with [, p dz = [4, poo dz = M, where

0= 2 (o (1)), m= B2

We will show that there are still no extremal functions to saturate the refined convex
Sobolev inequality (1.6). Therefore it is not yet known whether the above functional
dependence of |Iy| and ey, is optimal. But it improves upon (1.3) since we have

k(e) >e, VYe>0, (1.7)

and the best possible constants A\ are shown to be independent of p (see Theorem 4).
Also, the presented method can be extended to the case A\; = 0 (see Proposition 3

below), thus giving a decay rate of ¢t — Iy (p(t)|pss) for any solution p of (1.2), even

if A is not uniformly convex. We remark that nonlinear entropy—entropy production
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inequalities, or “defective logarithmic Sobolev inequalities,” have been derived for the
logarithmic entropy (i.e. 1) = 11) and Gaussian measures p, (cf. §1.3, §4.3 of [13]).

Next we consider reformulations of the convex Sobolev inequalities (1.3) and (1.6).
We assume M =1 and substitute

2
po_ |flP
= 2

Poo fRn ’f’p dpso

in (1.3) to obtain the generalized Poincaré inequalities derived by W. Beckner for Gaus-
sian measures ps in [5] and generalized in [2] for log-convex measures:

ﬁ[wﬂdp (/ F1P/7 dpoc )] A L DIV o (1.9)

(1.8)

for all f e L¥/P (dpso), 1 < p < 2. In the limit p — 1 this yields the logarithmic Sobolev
inequality:

2 f2 2 2
f log ( ) dpoo < A—l/ﬂwD!Vf! dpoo (1.10)

11y

for all f € L2(dpoo). Hence, (1.9) interpolates between the (classical) Poincaré and the
logarithmic Sobolev inequalities. A discussion on the interplay between (1.9), (1.10)
and additional inequalities “between Poincaré and log. Sobolev” can be found in [11]
and in §3 below. In [12] such interpolation inequalities are discussed for the Ornstein—
Uhlenbeck process on R™ and for the heat semigroup on spheres.

Using the transformation (1.8) on the refined Sobolev inequality (1.6) directly yields
a refinement of (1.9), which is nothing else than a reformulation of (1.6):

Theorem 2 Let po, satisfy (A2) for some Ay > 0 and assume that [o,dpss = 1. Then
2
1 p \2 2(p—1) 2.1
5 (—) 2 dpos — ( |f27 de0> 1P dpee
2 D — 1 Rn Rn Rn
2 2
<2 DIVfPdpe  (111)
)\1 Rn

holds for all f € L*/P(dps), 1 < p <2 and the limit p — 1 again yields (1.10).

Note that the left hand sides of (1.9) and (1.11) are related by

L N[ e _( 2/ >2(’“’.( 2 >51
2(p_1) [Rnf dpos— ([ 1557 o [ P ap.
P 20 2/p p}
zp_l[wf dpse (/Rn!f! dpoo) (1.12)

as a consequence of (1.7) and (1.8). This can of course be recovered using Holder’s

inequality:
p
( / |f|2/pdpoo> < [ 1P dpw (1.13)
Rn Rn
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and the inequality: %%(1 - t%(pfl)) >1—tforanyt e [0,1], p € (1,2]. Note that the

equality holds in (1.12) if and only if 1 =t = (fgu [f1*? dpoc)” (fan /] dpoo)_l, ie. if
f is a constant.

For p = 2, (1.9) and (1.11) hold without absolute values, cf. [2], provided 1s(0) =
02 —1—2(0 — 1) is defined over the whole real line. In that case, p is allowed to take
negative values.

In the next section, we shall prove Theorems 1 and 2 and exploit the method in
the case \; = 0. Further results on best constants, perturbations and connections with
Poincaré inequalities are presented in Section 3.

2 Convex Sobolev inequalities for power law entropies

Here and in the sequel we shall assume for simplicity that

/ Poodz =M =1.

The general case M > 0 then immediately follows by scaling.

Proof of Theorem 1. Since the first part of the proof is identical to §2.3 of [2] we
shall not go into details here. After a sequence of integrations by parts, dI,/dt can be
written as

d
Ty (p(1) o)
Y (u)D|u'"V ® (VAD — VD)u
Rn
2 12— 2
+ = AD|u| - —|u| VD -VA+ D (u -VD)? |dpoo (2.1)
s [ V@Dl 0 ) (ADT G u + 2DJuP V- VD)
Rn
Pu 10D O  10pdD 1 2
24" D SO 25VD Vi) |dps |
+297 () ; ( O0x;0x;  20x; 0x; 20x; 0x; 2 J H) P
where we used the notation p = £~ and v = V. Using (A2), the first integral of (2.1)

can be estimated below by 2A1[¢( (t)|poc)- In the second integral, we now insert 1),
from (1.5) and write it as a sum of squares. This is the key step in our analysis, where
we deviate from the strategy of [2] by using a sharper estimate:

d, _
gL (p@)lpc) 2 =211y (p(t)]poc) + (P — 1)%(2 - p) /R PP D2 ult dpo
_ p—2 p—2,0u op
+2p(p 1)/Rnu Z ( D% on; (2.2)
0’ 10D 8,u 1op oD 1

+D + 5

O0x;0x; 2 0x; 856] 58:61' 8—56] 2

> —2X\1 Iy (p(t)|poo) + p(p — 1)%(2 — p) /Rn 1D ult dpos

2
5iJ'VD'v:U’> dpoo
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In the two limiting cases p = 1 (replace v, by 1;1) and p = 2, the second term on the
r.h.s. of (2.2) disappears. In [2], this term was always disregarded. For 1 < p < 2,
however, it makes it possible to improve (1.3).

Using the Cauchy-Schwarz inequality, we have the estimate

2
(/ PP~ Dluf? dpoo> < /MP4D2\Ul4dpoo-/ 1P dpos
R™ R™ R™

:1/nuw4D%uﬁdmn-/;hme+ucmm

and hence 5
_ Iy (plpso) _
42|, 14 P \PlPoo 1
= D dpooZ(7>'e plpsc) +1 :
|t L) eyl + 1)
With the notation e(t) = ey (p(t)|psc), we get from (2.2)
S W (2.3)
e’ > 1€ R )
From (2.3) we shall now derive
le'| = —e’ > 21 k(e) , (2.4)

which is the assertion of Theorem 1. We first note that both I, (p(t)|po) and ey (p(t)|poo)
decay exponentially with the rate —2\;. This follows, respectively, from (1.4) and from
the usual convex Sobolev inequality (1.3).

The function

k(e):liﬁ<1+e—(1+e)“>

is the solution of ko)
e
=1 — k(0) =0.
e KO

Let

y(t) = [¢/(t) + 20 k(e()] - 0 et

For any t > 0, we calculate

,t 2 [t e/ (s)
y(t) = (e”(t) rone(t) - wi L ) Lo TRt

"T+et)
Since
(D] < [€/(8) + 270 K(e()] - 70 /O ds = |e/(1) 4 201 k(e(t))|e O] — g
as t — +oo, we conclude that y(t) < 0, which proves (2.4). O

As we had to expect, one recovers the usual convex Sobolev inequality (1.3) in the
limiting cases p = 1 (take the limit p — 1 after dividing (1.6) by p — 1) and p = 2 (this
gives k =0 and k(e) = e).

For 1 < p < 2, we notice that ﬁ e > k(e) > e for any e > 0, but
k(e)

lim —==1.
e—0L e
Hence, the estimate of Theorem 1 does not improve the asymptotic convergence rate of

the solution of Equation (1.2) except for A\; = 0:
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Proposition 3 With the above notations, let \y = 0 and 1 < p < 2. Any solution of
Equation (1.2) satisfies

Iy
I t < Vit>0
1Ol <

with Iy = |Iy(p(0)|pss)| and o = K m.

Proof. Inequality (2.3) can be rewritten in the form
/]2 = 1+e ~ 1+4¢€(0)’

thus proving the result. O

Next we address the question of saturation of the refined convex Sobolev inequality
(1.6), for simplicity only for the case D = 1. Using the strategy from [2] we rewrite
(2.1) as

1 / |6,|2
el = -2\ + g +ry(p(t))

where the remainder term is

ry(p(t))
" 0?A
= 2 - ' (p)u (87 - )\1]1) U dpso

9z \ 2
+2 -—1/ 2-p ( Z)clm 2.5
p(p—1) [ ZZJ: or, ) (2.5)

—1)%(2 - ’
+p(p ) ( p) . |:/ Mpdpoo / Hp_4|u|4dpoo o </ Mp_2|u|2dpoo) :| > 0’
e+ 1 n Rn Rn

with the notation z = pP~2Vu. Using the notation from the proof of Theorem 1, we
have

t e (s
HIO T+e(s) ds ,

y'(t) =ry(p(t)) e

and an integration with respect to t gives

—mm=w«m—x¢wm»=ﬁww@m> “I i g > .

Hence we conclude that (2.4) becomes an equality, for p = p(0), if and only if the
remainder vanishes along the whole trajectory of p(t), i.e.

ry(p(t)) =0, teR" ae.

However, no extremal function can simultaneously annihilate the second integral and
the square bracket of (2.5): to make the second integral vanish, the function u has to

1
be of the form p(z) = (C1 + Cy - )7~ (whenever u(x) # 0), and for the last term it
would have to be p(x) = e“17C2% Hence, (2.4) does not admit extremal functions.
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3 Further results and comments

In the previous sections we derived convex Sobolev inequalities (corresponding to power
law entropies) for steady state measures po = e~ 4(®), whose potential A(x) satisfies the
Bakry—Emery condition (A2). However, such inequalities hold also in much more general
situations: As soon as p, gives rise to a (classical) Poincaré inequality (cf. (3.1) below),
convex Sobolev inequalities of type (1.3), (1.6), (1.9), and (1.11) hold for p € (1,2]. Note
that this condition is much weaker than the assumption (A2).

3.1 Spectral gap, Poincaré and convex Sobolev inequalities
Using the Poincaré constant
. D|Vw|? d
Ay = inf fR | 1;)’ Poc
w € D(R") Jon [w]? dpoc
w#0, [gnwdpse =0

we shall now give an estimate on the sharp constant in the refined Sobolev inequality
(1.6) and its reformulation (1.11):

Theorem 4 Let D = D(z) > 0 and assume that pe € LY (R™) with [p, poc dv =:M =1
is such that Ay > 0. Then, refined convex Sobolev inequalites of type (1.6) hold for any
p € (1,2]. And the optimal constant

(3.1)

N 11y, (plp=c)]
P2 pezperi e k (ey, (plpoc))
Jrn pdz=M
satisfies the estimate
— 1\ 2
4 (p—) Ay < A, < A (3.2)
p

Proof. Ther.h.s. of this inequality is proved by contradiction: Assume that A, > A, and
substitute p%) = |£12P (fan | F1?/P dpoo)i1 (cf. (1.8)). A standard linearization argument
(put f2 =1+ cw and take the limit € — 0) then implies a Poincaré inequality with the
constant A, which would contradict the sharpness of A in (3.1).

For the Lh.s. of inequality (3.2) we estimate (using twice Jensen’s inequality and
then the Poincaré inequality):

-p

5 2(p—1) v
f?dpos — (/ !f!*’dpoo> ( fzdpoo>
R™ R™ Rn

92-p

22(p—1) .
2dpoy — dpeo dpeo
[ v ([ 1) ([ 100

<
1 2
A2 R
2
This reformulation of (1.6) (just like in (1.11)) shows that 4 (ijl) Ay <A, O

Next we shall show that the validity of a logarithmic Sobolev inequality implies the
convex Sobolev inequalies (1.9) and (1.11). Part (i) of the following corollary is mainly
due to Latala and Oleszkiewicz (Corollary 1 of [11]), with an improved constant for
3
5<p<2
2
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Corollary 5 Let D(z) > 0 and let pu be a probability measure on R? that gives rise to
a logarithmic Sobolev inequality:

[ 108 du< - [DIVIPdu ¥ f e Pdn) (3.3)
’fHLQ(du Al

Then:

(i) a convex Sobolev inequality holds for any p € (1,2]:

P min —
[ = ([spran) < REEZDD [ g an vy e .

(ii) a refined convex Sobolev inequality holds for any p € (1,2]:

[ra-([ \f\Pdu)Q(p ! (f r2an) - < [PVt G

Proof. The function p — a(p) := plog ([ |f|*/? du) is convex:

4 (S og 717 )(f|f|2/pdu) (f 1727 og | f1 dn)”
P’ (S 1127 dpr)” B

Thus p — e*®) is also convex and

o(p) =

(1) _ ()

p—1

hm 1
#(p) < lim (g / f*log (Hfrrmm)

P _
/fzd,u—(/|f|2/pd“) SﬂpTll)/D|vf|2dH

On the other hand, using the linearization from the proof of Theorem 4 for (3.3) and
using Holder’s inequality, (ffdu)2 <(f Fakks du)p, we also get

[ - </|f|2/”du)p < [ Pau- </fdu)2 <L [Dvstan.

Similarly, since the logarithmic Sobolev inequality (3.3) implies a classical Poincaré
inequality, (ii) follows directly from Theorem 4. O

p—o(p) =

is nonincreasing;:

This proves that
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3.2 Holley-Stroock type perturbations

In Section 1 we presented the refined convex Sobolev inequality (1.6) for steady state
measures po = e A*) whose potential A(z) satisfies the Bakry-Emery condition (A2).
We shall now extend that inequality for potentials Z(m) that are bounded perturbations
of such a potential A(z). Our result generalizes the perturbation lemma of Holley and
Stroock (cf. [10] for the logarithmic entropy v and §3.3 of [2] for general admissible
entropies).

For our subsequent calculations it is convenient to rewrite (1.6) as

f2 2 f2 " f2 ,
’ dpoc | < DIV dpw ,

(3.5)

where we substituted )
N S
Poo Jgn [? dpos

Theorem 6 Assume that 1) = 1, with some 1 < p < 2 is a fived entropy generator. Let
poo(x) = e 4@, pi(2) = 7A@ € LL(R™) with [4,pecdr = [gnpoodr = M and

Alz) = A@) +o(z),
0<a < @ <bh< oo, x € R™. (3.6)

Let the given diffusion D(x) be such that the convex Sobolev inequality (3.5) holds for all
f € L?(dps). Then a conver Sobolev inequality also holds for the perturbed measure pa :

1 aP f2 ) N> 9 f2 < f2 > o
a1\ d DIV f|* dpo 7
(5 Lo () ) <5 Lo (s ) oosrons - @0

for all nontrivial f € L*(dpss) = L*(dpsc). Here || f||3 stands for HfHL2 (dpm)”

Note that the normalization of po, and po, implies a < 1 and b > 1.

Proof. First we introduce the notations

A (a)
1122

Pl 171122 45

[T

x(z) =

() o X _
;o X(z) = ="

Mo

and because of (3.6) we have a < <b.
We adapt the idea of [10, 2] and define for a fixed f € L?(dpso) the function

9(s) :=sp/n¢(f> d

Since g attains its minimum at s = ”fH%?(dﬁ“ > by differentiating w.r.t. s, we have

11y [ 960 4% = a1 gy < 915 )
<Oy [ 900 dpc

where we used the estimate (3.6).



April 28, 2005 - A. Arnold & J. Dolbeault - Refined Convex Sobolev Inequalities 11

Using the monotonicity of k and Assumption (3.5), this yields:

w2 [ v diz) < k d
- X) dpso | < n¢(x) Poo
R R
2 f2 // 2
< S DIV |2 dps 3.8
< % o TV CODIV I do (33
2

S R S

)‘1 a Jrn Hf”L2(dp )

where we again used (3.6) in the last estimate.
Since «y/a > 1, the convexity of k and k(0) = 0 imply:

’yp %) dix i P A5
< Y .
Together with (3.8), this finishes the proof. ]

Note that a Holley—-Stroock perturbation of the usual convex Sobolev inequality (1.3)
would lead — under the assumptions of Theorem 6 — to the inequality

%2)\1 e < €| (3.9

(cf. [2]). Since

Inequality (3.7) certainly improves (3.9).
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