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Abstract

Improved entropy decay estimates for the heat equation are obtained by select-
ing well parametrized Gaussians. Either by mass centering or by fixing the second
moments or the covariance matrix of the solution, relative entropy towards these
Gaussians is shown to decay with better constants than classical estimates.
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1 Introduction

Describing the asymptotic behavior of diffusion and homogeneous kinetic models has
recently received a lot of attention in the partial differential equations community
[2]. Several approaches have been established to determine decay estimates towards
a distinguished profile for large times. In purely diffusive models, these asymptotic
profiles are typically given by self-similar solutions usually coming from stationary
solutions of equations in self-similar variables. The use of logarithmic entropies to
study large time asymptotics is classical in kinetic theory [14] and it was brought
up for diffusion equations in the seminal papers of G. Toscani [29,30].
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Variations of the entropy-entropy dissipation method connected to the Bakry-Emery
strategy [4,5] have been used to describe these rates for linear and nonlinear diffusion
equations [3,12,10]. Deep connections to optimal transport issues were discovered by
F. Otto [27]. He obtained these decay estimates using a suitable interpretation of the
diffusion equations as gradient flows/steepest descent of entropy or free-energy func-
tionals with respect to a formal Riemannian structure inducing an optimal transport
distance. These decay estimates in some cases were already known by classical tech-
niques involving compactness, scalings and maximum principle arguments [6,32,33].
In all these works, the decay estimates have been obtained in different senses, mainly:
entropy decay [3,12,27,10], optimal transport distance decay [27], and L1-decay [32],
and in [12,27,10] as a consequence of Csiszár-Kullback type inequalities [15,24,31].

Once the first asymptotic term has been pinpointed, the next step is to improve
the decay rate either by taking into account other invariances of the equation or by
identifying the next term in the large-time asymptotic expansion. In the case of the
heat equation, expansion at all orders of the solutions for large times in L1 were
obtained in [17]. More precisely, as long as more and more moments of the initial
data are bounded, a better approximation in terms of derivatives of the fundamental
solution of the heat equation and the moments of the initial data can be given for
large times. A similar result without identifying the asymptotic expansion at all
orders was obtained in [19] by using Fourier-based distances.

Obtaining the next terms in the asymptotic expansion and identifying the corre-
sponding improved decay estimates and rates are interesting and important open
question in the nonlinear diffusion case. This question has been addressed recently
for the fast diffusion equation at the linearized level [16] and, finally, proved for
the nonlinear fast-diffusion equation in [21,22,25]. These results take advantage of
the complete knowledge of the spectrum of the linearized operator: first they show
that solutions will lie for large times in a neighborhood of an asymptotic profile
and then, they try from the linearized improved decay rates to infer the result over
the nonlinear one. In particular, they show that mass-centering speeds up the con-
vergence rate for different particular cases of the diffusion exponent. In the case of
the porous medium equation, a formal expansion to all orders of the solutions in
the one-dimensional case was done in [1]. Finally, the improvement of decay rates
and decay estimates for the porous medium equation by either mass-centering of by
fixing equal variance was discussed in [34]. Essentially, these results give decay im-
provements in L1-spaces. An improvement on the optimal transport distance decay
by mass centering has been reported in the one dimensional case [9].

Here, we will show how the entropy decay estimates for the heat equation can be
improved by mass-centering and by fixing the covariance matrix of the approxima-
tions. In section 2, an improved decay estimate for the heat equation by fixing center
of mass and variance is obtained, whereas section 3 is devoted to generalize this idea
in the case of fixing the whole covariance matrix of the approximated Gaussian. Let
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us finally mention that these improvements will be at the level of the constants in
the decay estimates but not at the level of the decay rates for large times. Although
the improvement of the decay rate is expected and true at the L1 level [17], the
present approach does not yield it for the relative entropy.

2 The heat equation and isotropic Gaussians

It is well-known that solutions of the Cauchy problem for the heat equation with
diffusion constant k/2:







∂u
∂t

= k
2
△u, x ∈ R

n, t > 0

u(x, t = 0) = u0(x), x ∈ R
n

(2.1)

behave asymptotically like a Gaussian with the same mass as the solution and a
variance that is linearly increasing in t. This result can be easily recovered from the
classical logarithmic Sobolev inequality (LSI) of Gross [20,3] in R

n with respect to
the isotropic Gaussian measure

dMσ = (2πσ)−
n
2 e−

|x|2

2σ dx (2.2)

as in [29] guided by classical arguments from kinetic theory. Let us quickly review
a simplified proof of the one given in [29]. Consider any two probability densities
ρ1, ρ2 on R

n, i.e. ρ1, ρ2 ∈ L1
+(Rn) with

∫

Rn
ρ1 dx =

∫

Rn
ρ2 dx = 1.

We define the relative logarithmic entropy of ρ1 w.r.t. ρ2 as

e1(ρ1|ρ2) :=
∫

Rn

ρ1

ρ2
ln

ρ1

ρ2
ρ2 dx ≥ 0,

and
∫

ρ1 ln ρ1 dx is the logarithmic entropy of the probability density ρ1. The LSI
w.r.t. the Gaussian measure Mσ reads [20]

∫

Rn
g2 ln g2 dMσ ≤ 2σ

∫

Rn
|∇g|2 dMσ, (2.3)

for all σ > 0 and g ∈ L2(Rn, dMσ) with
∫

g2 dMσ = 1. By setting g2 = ρ
Mσ

it is
equivalent to

e1(ρ|Mσ) ≤ σ

2
I(ρ|Mσ), (2.4)
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for all ρ ∈ L1
+(Rn) with

∫

ρ dx = 1. Here,

I(ρ1|ρ2) :=
∫

Rn

ρ2

ρ1

∣

∣

∣

∣

∣

∇
(

ρ1

ρ2

)∣

∣

∣

∣

∣

2

ρ2 dx =
∫

Rn

∣

∣

∣

∣

∣

∇ ln

(

ρ1

ρ2

)∣

∣

∣

∣

∣

2

ρ1 dx

= 4
∫

Rn

∣

∣

∣

∣

∣

∇
√

ρ1

ρ2

∣

∣

∣

∣

∣

2

ρ2 dx ≥ 0 (2.5)

denotes the relative Fisher information of ρ1 w.r.t. ρ2 [18]. There is equality in (2.3)
if and only if

g(x) = gy(x) := exp

(

x · y√
σ

− |y|2
)

(2.6)

for an arbitrary y ∈ R
n, as established by Carlen in [7].

Theorem 1 (Standard Decay Estimate) [29] Let the initial value for the heat
equation u0 ∈ C(Rn)∩W 1,2

loc (Rn)∩L1
+(Rn) be a probability density on R

n with finite
second moment and entropy, i.e. u0(x) ≥ 0,

∫

u0 dx = 1,
∫ |x|2u0 dx < ∞, and

∫

u0| lnu0| dx < ∞. Then, the relative logarithmic entropy of the solution u to (2.1)
w.r.t. u∞(x, t) := ME+kt(x − x̃0) with an arbitrary x̃0 ∈ R

n and an arbitrary E > 0
satisfies the decay estimate

e1(u(t)|u∞(t)) ≤ E

E + kt
e1(u0|u∞(0)), ∀ t ≥ 0. (2.7)

Proof. Since u and u∞ are solutions of the heat equation, they are smooth, positive,
and rapidly decaying functions for all t > 0. Thus, we find for all t > 0

d

dt
e1(u(t)|u∞(t)) =

∫

Rn

∂u

∂t

[

ln

(

u

u∞

)

+ 1

]

dx −
∫

Rn

∂u∞

∂t

u

u∞
dx

=
k

2

∫

Rn
△u

[

ln

(

u

u∞

)

+ 1

]

dx − k

2

∫

Rn
△u∞

u

u∞
dx

= −k

2

∫

Rn

u∞

u
∇u · ∇

(

u

u∞

)

dx +
k

2

∫

Rn
∇u∞ · ∇

(

u

u∞

)

dx

= −k

2
I(u(t)|u∞(t)).

(2.8)

Hence, e1(u(, t)|u∞(t)) is non-increasing in time. Conservation of mass for the heat
equation shows that u is a probability density for t > 0. And since u∞(t) is a
Gaussian with second moment n(E + kt), we infer from the LSI (2.3) that

e1(u(t)|u∞(t)) ≤ E + kt

2
I(u(t)|u∞(t)).
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Applying this bound to the right-hand side of (2.8) yields with Gronwall’s lemma

e1(u(t)|u∞(t)) ≤ E

E + kt
e1(u0|u∞(0)), ∀ t ≥ 0.

Since

e1(u0|u∞(0)) =
∫

Rn
u0(x) ln u0(x) dx +

n

2
ln(2π(E + kt))

+
1

2(E + kt)

∫

Rn
|x − x̃0|2u0(x) dx < ∞,

we conclude that u converges in logarithmic entropy to u∞ as t → ∞.

Remark 2 (Sharpness) Due to the translational invariance of the heat equation
and the equality cases (2.6) of the LSI, the decay estimate (2.7) is sharp in the
following sense: choosing u0(x) = ME(x− x̃′

0) for an arbitrary x̃′
0 ∈ R

n, the solution
of the Cauchy problem for the heat equation is u(x, t) = ME+kt(x − x̃′

0) and

e1(u(·, t)|ME+kt(· − x̃0)) =
|x̃0 − x̃′

0|2
2(E + kt)

, ∀ t ≥ 0, (2.9)

leading to non-trivial equality in (2.7).

On the way to improving the decay rate in relative entropy for the solution of (2.1)
we shall compare u(t) to a better fitted Gaussian Mσ(t) – rather than to ME+kt.
Solutions of the heat equation obviously conserve the center of mass:

∫

Rn
xu(x, t) dx =

∫

Rn
xu0(x) dx := x0, ∀ t > 0, (2.10)

and linearly increase the second moment:

∫

Rn
|x − x0|2u(x, t) dx =

∫

Rn
|x − x0|2u0(x) dx + nkt := α + nkt, ∀ t > 0. (2.11)

Our first observation is that

e1(u(·, t)|Mα
n

+kt(· − x0)) = min
E>0

x̃0∈Rn

e1(u(·, t)|ME+kt(· − x̃0)), (2.12)

as it can easily be checked just by working on the explicit expression of the relative
entropy e1(u(·, t)|ME+kt(·− x̃0)). In other words, the optimal Gaussian (in the sense
of minimizing the relative entropy) for a given solution u at a fixed time t ≥ 0 is given
by the Gaussian with the same center of mass and variance as u, i.e. Mα

n
+kt(x−x0).
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In the following, we want to discuss if the decay estimate (2.7) for the relative
entropy of u w.r.t. to the optimal Gaussian Mα

n
+kt(x − x0) given by

e1(u(·, t)|Mα
n

+kt(· − x0)) ≤
α
n

α
n

+ kt
e1(u0|Mα

n
(· − x0)), t ≥ 0 (2.13)

is sharp as well. Clearly, we have equality for

u0(x) = Mα
n
(x − x0), (2.14)

but then both sides of (2.13) are zero. For other cases, equality in (2.13) for all t ≥ 0
would imply equality at t = 0 of both t–derivatives, i.e. −k

2
I = −n

α
ke1. But this is

the LSI (2.4), which becomes an equality only for the shifted Gaussians (2.6). But
then, the equality of moments in the optimized Gaussian (cf. (2.12)) leaves (2.14) as
the only case. Hence, there exists no initial function u0 satisfying the conditions of
(2.12) such that there is non-zero equality in (2.13) and this decay estimate is not
sharp anymore.

Now, we come back to Theorem 1 and the estimate

e1(u(·, t)|ME+kt(· − x̃0)) ≤
E

E + kt
e1(u0|ME(· − x̃0)) (2.15)

for an arbitrary x̃0 ∈ R
n and an arbitrary E > 0. We observe that for small values

E > 0 the ratio E/(E + kt) decays faster to zero as t goes to infinity than for large
E’s. This leads us to the conjecture that it is possible to find a sharper estimate for
the logarithmic entropy of the solution u w.r.t. the Gaussian Mα

n
+kt(· − x0) than

(2.13) by determining a function E(t) with 0 < E(t) < α
n

for t > 0, which should be
used instead of a constant E on the right-hand side of (2.15).

The idea for deriving such an optimized decay estimate is to minimize the right-hand
side of inequality (2.15) w.r.t. E > 0 and x̃0 ∈ R

n. As before, we find for all fixed
times t ≥ 0 that

e1(u(·, t)|Mα
n

+kt(· − x0)) = min
E>0

x̃0∈Rn

e1(u(·, t)|ME+kt(· − x̃0))

≤ inf
E>0

x̃0∈Rn

E

E + kt
e1(u0|ME(· − x̃0))

= inf
E>0

E

E + kt
e1(u0|ME(· − x0)).

(2.16)

In the case u0(x) = Mα
n
(x − x0), we have e1(u(·, t)|Mα

n
+kt(· − x0)) = 0 for all times

t ≥ 0 and it holds equality in the estimate (2.7). Hence, we obtain the minimum of
the right-hand side of (2.16) and therefore the best estimate for the choice E = α

n
.

In general we have to determine the time-dependent second moment E(t) > 0 by
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minimizing for each fixed t > 0 the function f : R
+ × R

+
0 −→ R

+
0 defined as

f(E, t) :=
E

E + kt
e1(u0|ME(· − x0))

=
E

E + kt

(

∫

Rn
u0(x) ln u0(x) dx +

n

2
ln(2πE) +

α

2E

) (2.17)

which leads us to the following result:

Lemma 3 (Computation of Emin(t)) Let u0(x) 6= Mα
n
(x−x0) on a set of positive

measure. Then the function f(E, t) defined by (2.17) has w.r.t. E > 0 for all fixed
t ≥ 0 a unique minimum Emin(t) with the following properties:

a) Emin(t) satisfies

(

∫

Rn
u0(x) ln u0(x) dx+

n

2
ln(2πEmin(t))+

n

2

)

kt =
α

2
−n

2
Emin(t), ∀ t ≥ 0 (2.18)

b) Emin(0) = α
n

c) E∞
min := limt→∞ Emin(t) = α

n
exp

(

− 2
n
e1(u0|Mα

n
(· − x0))

)

= 1
2π

exp

(

− 2
n

∫

Rn u0(x) ln u0(x) dx − 1

)

d) Emin(t) is strictly monotonic decreasing w.r.t. t ≥ 0. In particular,

0 < Emin(t) <
α

n
, ∀ t > 0.

E

α

2

Emin(0) = α

n
E∞

min Emin(t)





∫

u0 ln u0 dx + n

2 ln (2πE) + n

2



kt

α

2 − n

2E

Fig. 1. Emin(t) is the intersection point of the functions on the left-hand and right-hand
side of (2.18) for all t ≥ 0. limt→∞ Emin(t) = E

∞
min and Emin(0) = α

n are the unique roots
of the left- and right-hand side of (2.18).
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Proof. f(E, t) is for all times t ≥ 0 differentiable w.r.t. E with

∂

∂E
f(E, t) =

kt

(E + kt)2
e1(u0)|ME(· − x0)) +

E

E + kt

(

n

2E
− α

2E2

)

=
kt

(E + kt)2

(

∫

Rn
u0 ln u0 dx +

n

2
ln(2πE)

)

+
n

2(E + kt)
− α

2(E + kt)2

=
f̃(E, t)

(E + kt)2

(2.19)

where

f̃(E, t) =

(

∫

Rn
u0 ln u0 dx +

n

2
ln(2πE)

)

kt +
n

2
(E + kt) − α

2

is monotonically increasing w.r.t. E > 0. We observe that f̃(E, t) converges to −∞
as E −→ 0+ and evaluating the function at the point E = α

n
leads to

f̃

(

E =
α

n
, t

)

= e1(u0|Mα
n
(· − x0)) · kt > 0, ∀ t > 0.

We conclude by the continuity of f̃(E, t) w.r.t. E > 0 and the intermediate value
theorem that f̃(E, t) is zero at one point Emin(t) ∈ (0, α

n
) and thus, f̃(E, t) and

∂Ef(E, t) have a unique zero for t > 0. The fact that f̃(E, t) and ∂Ef(E, t) have the
same sign yields the uniqueness of a minimum Emin(t) in (0, α

n
) of f(E, t) for t > 0.

a) By setting (2.19) to zero and rewriting the equation we find for all t ≥ 0 a
condition for Emin(t) such that of ∂Ef(E, t) becomes zero:

(

∫

Rn
u0 ln u0 dx +

n

2
ln(2πEmin(t)) +

n

2

)

kt =
α

2
− n

2
Emin(t). (2.20)

b) Evaluating (2.20) at t = 0 yields Emin(0) = α
n
.

c) Since Emin(t) is bounded we find by (2.20) that E∞
min := limt→∞ Emin(t) solves

the equation
∫

Rn
u0 ln u0 dx +

n

2
ln(2πE∞

min) +
n

2
= 0,

which is equivalent to

e1(u0|Mα
n
(· − x0)) −

n

2
ln

(

2π
α

n

)

+
n

2
ln(2πE∞

min) = 0. (2.21)

d) Differentiating the expression (2.20) w.r.t. t ≥ 0 gives

E ′
min(t) = − Emin(t)

Emin(t) + kt

2

nt

(

α

2
− n

2
Emin(t)

)

, ∀ t > 0.
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Since Emin(t) ∈ (0, α
n
) for t > 0, we have E ′

min(t) < 0 for t > 0 and

E ′
min(0) = −2k

n
e1(u0|Mα

n
(· − x0)) < 0. (2.22)

Thus, Emin(t) is strictly monotonic decreasing w.r.t. t ≥ 0.

This concludes the proof.

In the case u0(x) = Mα
n
(x − x0) a.e., we define Emin(t) := α

n
. Using Lemma 3

together with (2.16) we can now improve the decay estimate for the relative entropy
in Theorem 1:

Theorem 4 (Improved Decay Estimate) Let the initial value u0 ∈ C(Rn) ∩
W 1,2

loc (Rn) ∩L1
+(Rn) be a probability density on R

n with finite second moment and fi-
nite absolute entropy, i.e. u0 ≥ 0,

∫

u0 dx = 1,
∫ |x|2u0 dx < ∞, and

∫

u0| lnu0| dx <
∞. Then the solution u of the initial value problem (IVP) (2.1) satisfies

e1(u(·, t)|Mα
n

+kt(· − x0)) ≤
Emin(t)

Emin(t) + kt
e1(u0|MEmin(t)(· − x0))

=
1

kt

(

α

2
− n

2
Emin(t)

)

, ∀ t > 0.

(2.23)

Proof. By (2.16) we obtain the optimized estimate

e1(u(·, t)|Mα
n

+kt(· − x0)) ≤ f(Emin(t), t).

Inserting the conditional equation (2.20) for Emin(t) in the definition of f(E, t) gives

f(Emin(t), t) =
Emin(t)

Emin(t) + kt
e1(u0|MEmin(t)(· − x0))

=
Emin(t)

Emin(t) + kt

[

1

kt

(

α

2
− n

2
Emin(t)

)

− n

2
+

α

2Emin(t)

]

=
Emin(t)

Emin(t) + kt

(

1

kt
+

1

Emin(t)

)(

α

2
− n

2
Emin(t)

)

=
1

kt

(

α

2
− n

2
Emin(t)

)

,

concluding the proof.
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We end this section by analyzing the sharpness of the optimized decay estimate
(2.23) from Theorem 4. For some fixed initial value u0 let us assume that there
holds equality in (2.23) on some (possibly small) time interval [0, T ], i.e.

e1(u(·, t)|Mα
n

+kt(·−x0)) =
Emin(t)

Emin(t) + kt

(

∫

Rn
u0 ln u0 dx+

n

2
ln(2πEmin(t))+

α

2Emin(t)

)

.

Differentiating this equality w.r.t. the time t ≥ 0 yields

d

dt
e1(u(·, t)|Mα

n
+kt(· − x0)) (2.24)

=
E ′

min(t)kt − Emin(t)k

(Emin(t) + kt)2
e1(u0|MEmin(t)(· − x0)) +

E ′
min(t)

Emin(t) + kt

(

n

2
− α

2Emin(t)

)

.

From (2.8) we know that for all times t ≥ 0

d

dt
e1(u(·, t)|Mα

n
+kt(· − x0)) = −k

2
I(u(·, t)|Mα

n
+kt(· − x0)).

Evaluating (2.24) at time t = 0 gives with Emin(0) = α
n
:

α

2n
I(u0|Mα

n
(· − x0)) = e1(u0|Mα

n
(· − x0)).

This LSI becomes an equality only in the case (2.6), where

g2(x) :=
u0(x)

Mα
n
(x − x0)

.

Finally, we find with t = 0 and E = α
n

for the normalized u0 the condition

u0(x) = Mα
n

(

x −
(

x0 + 2

√

α

n
y

))

where y ∈ R
n is arbitrary. Since the first moment of u0 is assumed to be equal to

x0, we conclude that

u0(x) = Mα
n
(x − x0).

Hence, we have equality in (2.23) only in the case that both sides of the inequal-
ity are equal to zero. So, the optimized decay estimate is not sharp in the sense above.

Next we compare our improved decay estimate (2.23) to the classical estimate (2.13)
by Toscani [29]. Let us first discuss their large-time behaviors. Actually, (2.18) is

10



equivalent to

Emin(t) =
1

2π
exp

[

−2

n

∫

Rn
u0 ln u0 dx − 1 +

2

nkt

(

α

2
− n

2
Emin(t)

)]

= E∞
min exp

[

2

nkt

(

α

2
− n

2
Emin(t)

)]

, ∀ t > 0,

that can be expanded for t ≫ 1:

Emin(t) = E∞
min

[

1 +
2

nkt

(

α

2
− n

2
Emin(t)

)

+ O(t−2)

]

.

Thus, the quantity Emin(t)−E∞
min is for large times t proportional to (E∞

min + kt)−1

and we obtain for the improved decay estimate the approximation

e1(u(·, t)|Mα
n

+kt(· − x0)) ≤
1

kt

[

α

2
− n

2
E∞

min −
(

α

2
− n

2
E∞

min

)

E∞
min

E∞
min + kt

+ O(t−2)

]

=
α
2
− n

2
E∞

min

E∞
min + kt

+ O(t−3), ∀ t ≫ 1. (2.25)

The large time behavior of our new decay estimate is similar to the original decay
estimate: The right-hand side of (2.23) is proportional to (E∞

min + kt)−1 for large
times t while the estimate (2.13) is proportional to (α

n
+ kt)−1.
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Fig. 2. R(0.1), R(1), and R(10) for n = 1 and k = 1.

Therefore, our new decay estimate does not improve the decay rate at ∞ that
one may expect from centering and normalizing the Gaussian approximation (at
least in L1 and in weighted L2–spaces). However, it does improve at the level of
constants of decay, i.e., at the level of the ratio of the improved decay estimate
(2.23) to the original estimate (2.13) w.r.t. to the time t > 0. We define the function
R : R

+ −→ R
+ describing this ratio by

R(t) :=

1
kt

(

α
2
− n

2
Emin(t)

)

α
n

α
n

+kt
e1(u0|Mα

n
(· − x0))

.

Using the approximation (2.25) of Emin(t) for large times t gives

R(t) =

α
2
−n

2
E∞

min

E∞
min

+kt
α
n

α
n

+kt
e1(u0|Mα

n
(· − x0))

+ O(t−2)

=
α
2
− n

2
E∞

min
α
n
e1(u0|Mα

n
(· − x0))

·
α
n

+ kt

E∞
min + kt

+ O(t−2), ∀ t ≫ 1.

(2.26)
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We find that the ratio of the estimates is decreasing w.r.t. large times t ≫ 1. Since
the estimates coincide initially, the improvement of the decay rate becomes better
for large times t and in the limit t → ∞ the ratio converges with rate (E∞

min + kt)−1

to

R(∞) =
α
2
− n

2
E∞

min
α
n
e1(u0|Mα

n
(· − x0))

. (2.27)

Since E∞
min = α

n
exp

[

− 2
n
e1(u0|Mα

n
(· − x0)

]

we find that the ratio R(t) converges to

1 − exp
[

− 2
n
e1(u0|Mα

n
(· − x0))

]

2
n
e1(u0|Mα

n
)

(2.28)

as the time t goes to infinity. This limit is monotonically decreasing for increasing
logarithmic entropies e1(u0|Mα

n
(· − x0)) > 0. We finally point out that the function

Emin(t) as defined by (2.18) only depends on the variance of u0 and on its relative
entropy w.r.t. the Gaussian Mα

n
(· − x0). Figure 2 shows the ratio function R(t) for

different times as a function of α :=
∫ |x − x0|2u0(x) dx and the relative entropy

e1(u0|Mα
n
(· − x0)).

Example 5 We consider the initial function u0 on R defined by

u0(x) :=







1
2(x2−x1)

, x1 ≤ |x| ≤ x2

0, otherwise
(2.29)

where x2 > x1 > 0. It is an even probability density with second moment α = 1
3
(x2

1 +
x1x2+x2

2) and relative entropy e1(u0|Mα) = − ln(2(x2−x1))+
1
2
ln(2πα)+ 1

2
. Choosing

x1 = 1 and x2 = 1.1, we get α ≈ 1.1033, e1(u0|Mα) ≈ 3.0775 and E∞
min ≈ 0.0023.

The limit (2.27) of the ratio of the improved decay estimate to the original one is
approximately 0.1621. Figure 3 shows a comparison of the two decay estimates: the
original (2.13) and the improved (2.23).
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Fig. 3. Left: Logarithmic plot of the original decay estimate (2.13), the improved decay
estimate (2.23), and the approximation (2.25) of the improved decay estimate for t ≫ 1
divided by e1(u0|Mα). The original decay estimate is plotted against α+t and the improved
decay estimate as well as its approximation against E

∞
min+t in order to verify its asymptotic

behaviors (α + t)−1 and (E∞
min + t)−1, resp. Right: Ratio of the original (2.13) to the

improved decay estimate (2.23), the approximation (2.26) of the ratio for t ≫ 1, and the
limit (2.27) of this approximation for t → ∞.

Remark 6 (L1-decay) Using the well known Csiszár-Kullback inequality for prob-
ability densities [15,24]:

‖ρ1 − ρ2‖2
L1(Rn) ≤ 2e1(ρ1|ρ2),

the above decay estimates imply analogous results in L1.

Remark 7 (More General Parabolic Equations) In the spirit of [29], we can
extend Theorem 4 to derive improved decay estimates for uniformly parabolic equa-
tions of the form

∂u

∂t
=

k

2
div([I + A(x, t)]∇u).

Here, I is the identity matrix on R
n. The symmetric positive perturbation A as well

as its first spatial derivative are supposed to decay like (1+ t)−β for some 0 < β < 1
(cf. [29,23] for details).

Remark 8 (Fokker-Planck equations) Using the time dependent rescaling

u(ξ, τ) = R(τ)−nv

(

ξ

R(τ)
, ln R(τ)

)

with R(τ) =
√

kτ + 1 transforms the heat equation (2.1) into the Fokker-Planck
equation

∂v

∂t
= div(∇v + xv), x ∈ R

n, t > 0.
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Hence, the new decay estimate from Theorem 4 immediately translates into an im-
proved decay estimate for the solution of the Fokker-Planck equation towards its
unique normalized steady state v∞(x) = e−|x|2/2 (cf. [23] for details).

3 The heat equation and non-isotropic Gaussians

Up to now we have considered decay estimates for the heat equation w.r.t. isotropic
Gaussians of the shape (2.2). Various convergence rates for the heat equation to more
universal Gaussian densities in R

n, namely Gaussians with an arbitrary covariance
matrix, were found in [19]. Motivated by these results we shall now generalize our
convergence rates in logarithmic entropy of Section 2 to solutions for the heat equa-
tion with respect to general non-isotropic Gaussians:

MΣ(x) := (2π)−n/2(det Σ)−1/2 exp

(

−1

2
Σ−1x · x

)

, x ∈ R
n (3.1)

where the covariance matrix Σ ∈ R
n×n is symmetric and positive definite.

Given an initial probability density u0 on R
n with finite second moments and an

arbitrary x0 ∈ R
n, we define the positive definite matrix K(t) = (Kij(t))i,j=1,...,n for

all times t ≥ 0 by

Kij(t) :=
∫

Rn
(x − x0)i(x − x0)j u(x, t) dx, i, j = 1, . . . , n, (3.2)

where u is the solution of the heat equation (2.1). It is a simple matter to check that
the evolution of the second moments of the solution is linear in time, more precisely,
K(t) = K(0) + ktI for all t ≥ 0.

Let us remark that the n-dimensional Gaussian density with first moment x0 and
covariance matrix K(t), MK(t)(x−x0) is a solution itself to the heat equation (2.1).
Since the heat equation is invariant under rotation of the coordinate system, we shall
assume w.r.o.g. that K(0) is diagonal. Since K(t) = K(0) + ktI is then diagonal for
all t ≥ 0. Hence, MK(t)(x − x0) is a tensor product of 1D Gaussians, each of which
satisfies the 1D heat equation.

3.1 Decay in relative entropy

The linear growth in time of the covariance matrix of general solutions motivates to
consider its entropy behavior w.r.t. Gaussians with a covariance matrix of the form
E+ktI, where E ∈ R

n×n is an arbitrary positive definite and symmetric matrix. We
start with a lemma that is similar to [29, Lemma 1]:
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Lemma 9 (Finite Relative Fisher Information) Let the initial value u0

∈ C(Rn) ∩ W 1,2
loc (Rn) ∩ L1

+(Rn) be a probability density on R
n with finite second

moments. Then there is a constant C > 0 such that the solution u of the IVP (2.1)
satisfies

I(u(t)|u∞(t)) < C, ∀ t ∈ [t1, t2], 0 < t1 < t2 < ∞ (3.3)

with u∞(x, t) := ME+ktI(x−x0) for an arbitrary x0 ∈ R
n and an arbitrary symmetric

and positive definite matrix E ∈ R
n×n. Moreover,

lim
|xj |→∞

∂u(t)

∂xj

(

ln
u(t)

u∞(t)
+ 1

)

= 0, (3.4)

lim
|xj |→∞

∂u∞(t)

∂xj

u(t)

u∞(t)
= 0 (3.5)

for all t > 0 and j = 1, . . . , n.

Proof. We calculate for all t > 0

∂

∂xi

u

u∞
=

1

u∞

∂u

∂xi
+

u

u∞
((E + ktI)−1x)i

and find

∣

∣

∣

∣

∣

∇ u

u∞

∣

∣

∣

∣

∣

2

=
1

(u∞)2
|∇u|2 +

u2

(u∞)2
|(E + ktI)−1x|2 +

u

(u∞)2
2
(

(E + ktI)−1x
)

· ∇u.

This leads to

I(u(t)|u∞(t))=
∫

Rn

1

u
|∇u|2 dx +

∫

Rn
|(E + ktI)−1x|2u dx + 2

∫

Rn
(E + ktI)−1x · ∇u dx,

(3.6)
and the last term equals −2 tr(E + ktI)−1.

It is proved in [29] that the first integral in the expression (3.6) is bounded for an
initial function u0 ∈ C(Rn) ∩ W 1,2

loc (Rn):

∫

Rn

1

u
|∇u|2 dx ≤

∫

Rn

1

Mkt
|∇Mkt|2 dx =

n

kt
≤ n

kt1
, t ≥ t1.

Hence,

I(u(t)|u∞(t)) =
∫

Rn

1

u
|∇u|2 dx+

∫

Rn
|(E+ktI)−1x|2u dx−2 tr(E+ktI)−1 < C, (3.7)

for all t ≥ t1 > 0. In [29] Toscani also showed

lim
|xj |→∞

∂u

∂xj
(ln u + 1) = 0.
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Since u and ∂u
∂xj

are smooth, fast-decaying at infinity functions and have finite second

order moments, we deduce

− lim
|xj |→∞

∂u

∂xj
ln u∞ =

1

2
lim

|xj |→∞

∂u

∂xj
[(E + ktI)−1x · x + C(t)] = 0

and

lim
|xj|→∞

∂u∞

∂xj

u

u∞
= − lim

|xj |→∞
((E + ktI)−1x)j u = 0,

concluding the proof.

This lemma leads to the proof of a decay rate in relative entropy for the solution of
the heat equation w.r.t. general Gaussians.

Theorem 10 (Basic Decay Estimate) Let the initial value for the heat equation
u0 ∈ C(Rn) ∩ W 1,2

loc (Rn) ∩ L1
+(Rn) be a probability density on R

n with finite second
moment and entropy. Then the relative entropy of the solution u to the IVP (2.1)
w.r.t. u∞(x, t) := ME+ktI(x − x0) with an arbitrary x0 ∈ R

n and an arbitrary sym-
metric and positive definite matrix E ∈ R

n×n converges to zero as t → ∞. More
precisely,

e1(u(t)|u∞(t)) ≤ ρ(E)

ρ(E) + nkt
e1(u0|u∞(0)), ∀ t ≥ 0, (3.8)

where ρ(E) denotes the spectral radius of E.

Proof. Following the proof of Theorem 1 we obtain for all t > 0

d

dt
e1(u(t)|u∞(t)) =

∫

Rn

∂u

∂t

[

ln

(

u

u∞

)

+ 1

]

dx −
∫

Rn

∂u∞

∂t

u

u∞
dx

=
k

2

∫

Rn
△u

[

ln

(

u

u∞

)

+ 1

]

dx − k

2

∫

Rn
△u∞

u

u∞
dx

= −k

2

∫

Rn

u∞

u
∇u · ∇

(

u

u∞

)

dx +
k

2

∫

Rn
∇u∞ · ∇ u

u∞
dx

= −k

2
I(u(t)|u∞(t)),

(3.9)

where I(u(t)|u∞(t)) is the relative Fisher information (2.5) of u w.r.t. u∞. We con-
clude that the relative entropy e1(u(t)|u∞(t)) is monotonically decreasing w.r.t. time.
In the above integrations by parts, the boundary terms disappear due to Lemma 9.

Next we shall apply a LSI for the measure u∞(t). To this end we use ρ(E) I ≥ E > 0
and hence

(E + ktI)−1 ≥ (ρ(E) + kt)−1
I, t ≥ 0. (3.10)
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Since

Hessx[− ln u∞(x, t)] = Hessx[− ln ME+ktI(x − x0)] = (E + ktI)−1,

(3.10) shows that u∞(t) is uniformly log-concave with lower bound (ρ(E) + kt)−1.
Thus, (3.10) is a Bakry-Emery condition for the probability density u∞(t), cf. [4,5,3].
Hence, u∞(t) satisfies the LSI

e1(ρ|u∞(t)) ≤ ρ(E) + kt

2
I(ρ|u∞(t)) (3.11)

∀ρ ∈ L1
+(Rn) with

∫

ρ dx = 1. Combining (3.9) and (3.11) yields

d

dt
e1(u(t)|u∞(t)) ≤ − k

ρ(E) + kt
e1(u(t)|u∞(t)), t > 0

and Gronwall’s lemma implies the decay estimate (3.8).

3.2 Improved decay estimate in relative entropy

Following the strategy of Section 2 we shall improve the decay estimate of Theorem
10 for the solution of the heat equation. In a first step we identify, for each fixed
t ≥ 0, the optimal non-isotropic Gaussian in the same sense as in the case of stan-
dard Gaussians. This shall yield by a minimization method an improvement of the
convergence rate in relative entropy w.r.t. general Gaussians.

We consider an initial probability density u0 on R
n with its center of mass at x0 ∈ R

n,
i.e.

∫

(x − x0)u0 dx = 0, and with
∫ |x − x0|2u0 dx < ∞. For all t ≥ 0 the covariance

matrix K(t) ∈ R
n×n of the solution u(t) to the heat equation is defined by

Kij(t) :=
∫

Rn
(x − x0)i(x − x0)ju(x, t) dx, i, j = 1, ..., n. (3.12)

As in previous section, we know that K(t) = K(0) + ktI.

Now we want to find the general Gaussian u∞(x, t) := MĒ(t)(x− x̄0) that minimizes
(for each fixed t ≥ 0) the relative entropy e1(u(t)|u∞(t)). The optimal first moment
x̄0 ∈ R

n of u∞ and the optimal positive definite matrix Ē(t) ∈ R
n×n are such that

the 0th and 1st moments of u(t) and u∞(t), as well as their covariance matrices
coincide:

Theorem 11 (Optimal Non-isotropic Gaussian) Let the initial value u0 be a
probability density on R

n with finite second moment and entropy. Then, for each fixed
time t ≥ 0, e1(u(t)|MK(0)+ktI(·−x0)) is the smallest relative entropy of the solution u
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of the IVP (2.1) w.r.t. all general Gaussians M
Ẽ(t)(x− x̃0) with an arbitrary x̃0 ∈ R

n

and an arbitrary positive definite matrix Ẽ(t) ∈ R
n×n.

Proof. The relative entropy reads

e1(u(t)|M
Ẽ(t)(· − x̃0))

=
∫

Rn
u lnu dx +

n

2
ln
(

2π[det Ẽ(t)]1/n
)

+
1

2

∫

Rn
Ẽ(t)−1(x − x̃0) · (x − x̃0)u dx.

(3.13)

f(x̃0), defined as the third term on the right-hand side of this equation is minimal
w.r.t. x̃0 ∈ R

n if and only if

∇f(x̃0) = −
∫

Rn
Ẽ(t)−1(x − x̃0)u(x, t) dx = 0.

Since the matrix Ẽ(t) is regular, this condition is equivalent to

∫

Rn
(x − x̃0)u(x, t) dx = 0. (3.14)

Since u(x, t) conserves the center of mass (cf. (2.10)) we conclude: The relative
entropy e1(u(t)|M

Ẽ(t)(· − x̃0)) is minimal w.r.t. x̃0 ∈ R
n iff the first moments of u

and M
Ẽ(t)(x − x̃0) coincide, i.e. iff x0 = x̃0.

To determine the positive definite matrix Ē ∈ R
n×n minimizing, for each fixed t ≥ 0,

the relative entropy (3.13), we have to minimize

ln(det Ẽ) + tr(Ẽ−1K)

w.r.t. all positive definite matrices Ẽ = Ẽ(t). K = K(0) + ktI denotes here the
covariance matrix of u(t). To simplify the computation we put F :=

√
KẼ

−1
√

K ≥ 0.
Using the cyclicity of the trace we now have to minimize

− ln(det F) + tr(F) =
n
∑

j=1

(λj − ln λj)

w.r.t. all positive definite matrices F, with λj denoting its eigenvalues. Clearly, the
unique minimum is attained at F = I, or equivalently, at Ē = K.

With this knowledge of the optimal Gaussian we are able to improve our decay
estimate (3.8) for the solution of the heat equation w.r.t. general Gaussians, using
a method similar to the one of Section 2. Theorem 10 yields for the solution u(t) of
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the heat equation (2.1) the decay estimate

e1(u(t)|ME+ktI(· − x̃0)) ≤
ρ(E)

ρ(E) + nkt
e1(u0|ME(· − x̃0)) (3.15)

for an arbitrary x̃0 ∈ R
n and an arbitrary positive definite matrix E ∈ R

n×n. We
estimate like in (2.16):

e1(u(t)|MK(0)+ktI(· − x0)) = min
E>0

x̃0∈Rn

e1(u(t)|ME+ktI(· − x̃0))

≤ inf
E>0

x̃0∈Rn

ρ(E)

ρ(E) + nkt
e1(u0|ME(· − x̃0))

= inf
E>0

ρ(E)

ρ(E) + nkt
e1(u0|ME(· − x0)).

(3.16)

In the case u0(x) = MK(0)(x− x0) we find that e1(u(t)|MK(0)+ktI(· − x0)) = 0 for all
times t ≥ 0 and it holds equality in (3.15). Hence, we obtain the minimum of the
right-hand side of formula (3.16) for E = K(0), i.e. (3.15) is already optimal.

In the case u0(x) 6= MK(0)(x − x0) we have to minimize the function f , defined for
each t ≥ 0 on the cone of positive definite matrices:

f(E, t) :=
ρ(E)

ρ(E) + nkt
e1(u0|ME(· − x0)) (3.17)

=
1

2

ρ(E)

ρ(E) + nkt

(

2
∫

Rn
u0 ln u0 dx + n ln(2π) + ln(det E) + tr(E−1K(0))

)

≥ 0

w.r.t. E ≥ 0. This function has the following features.

Lemma 12 (Computation of Emin(t)) For each fixed t ≥ 0 the function f(E, t)
has w.r.t. to all symmetric and positive definite matrices E ∈ R

n×n a unique mini-
mum at Emin(t) ∈ R

n×n with the following properties:

a) Emin = Emin(t) satisfies

Emin = min(K(0), ρminI),

where ρmin = ρ(Emin) ≤ ρ(K(0)) is its spectral radius.
b) Emin(0) = K(0).
c) Emin(t) is monotonically decreasing w.r.t. t ≥ 0, i.e. Emin(t2) ≤ Emin(t1) for

0 ≤ t1 < t2 in the sense of positive definite matrices. In particular,

0 < E
∞
min ≤ Emin(t) ≤ K(0), ∀ t ≥ 0.

Proof. To simplify the notation we put K = K(0). W.r.o.g. we shall assume K =
diag(k1, ..., kn) with 0 < k1 ≤ k2 ≤ ... ≤ kn. Indeed, if the minimum of fK(., t) is
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attained at E = Emin, the minimum of fK̃(., t) with K̃ := SKS−1 and S orthogonal
is attained at Ẽmin := SEminS

−1. This follows from ρ(Emin) = ρ(Ẽmin), det(Emin) =
det(Ẽmin), tr(E−1

minK) = tr(Ẽ−1
minK̃), and hence fK(Emin, t) = fK̃(Ẽmin, t).

We shall now minimize f(E, t) w.r.t. E positive definite and symmetric in three
steps, to show that we can reduce to minimize a function of the spectrum of E:

min
E>0

f(E, t) = min
ρ>0

f1(ρ, t)



min
E>0

ρ(E)=ρ

f2(E)



 (3.18)

= min
ρ>0

f1(ρ, t)











min
σ(E)⊂R+

ρ(E)=ρ fixed





β + ln(det E) + min
E>0

σ(E)⊂R+ fixed

tr(E−1K)

















,

with the scalar functions

f1(ρ, t) :=
1

2

ρ

ρ + nkt
, ρ > 0,

f2(E) := β + ln(det E) + tr(E−1K) = β +
n
∑

j=1

(

ln ej +
kj

ej

)

, E > 0, (3.19)

with β := 2
∫

u0 ln u0 dx + n ln(2π) and σ(E) = {0 < e1 ≤ ... ≤ en = ρ}.

Step 1:
First we shall minimize tr(E−1K) over all symmetric matrices E having the fixed
spectrum σ(E) = {0 < e1 ≤ ... ≤ en = ρ}. Since K is diagonal, the minimum of
tr(E−1K) is attained at E3 = diag(e1, ..., en). Since the entries of K are increasing,
also the ej ’s have to increase. This is a direct consequence of the following result
(Theorem 1 of [28]): For all real symmetric matrices A, B it holds:

n
∑

j=1

λn−j+1(A)λj(B) ≤ tr(AB) ≤
n
∑

j=1

λj(A)λj(B),

where the eigenvalues are labeled in increasing order. The right inequality is actually
a special case of the von Neumann trace inequality [26]. The left inequality now yields
the assertion

tr(E−1K) ≥
n
∑

j=1

λn−j+1(E
−1)λj(K) =

n
∑

j=1

kj

ej
= tr(E−1

3 K) ∀E > 0 with σ(E) fixed.

Step 2:
Next we minimize f2(E) over all diagonal matrices E > 0 subject to the constraint
ρ(E) = ρ with σ(E) = {0 < e1 ≤ ... ≤ en = ρ}. From this we can conclude that the
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unique minimum of f2(E) w.r.t. E > 0 and ρ(E) = ρ (with ρ fixed) is attained at
E2 = (e21, ..., e2n) with

e2j = min(kj, ρ), j ≤ n − 1,

e2n = ρ.
(3.20)

We first remark that each summand of (3.19) is a decreasing function of ej for
0 < ej < kj, increasing for ej > kj achieving its minimum at ēj = kj. Now, the
largest eigenvalue e2n must be equal to ρ by definition of the minimization set of
matrices. Taking into account both facts we verify (3.20). Using (3.20) in (3.19), the
minimum of f2(E) satisfies

f3(ρ) := min
E>0

ρ(E)=ρ

f2(E) = f2(E2) = β + ln ρ +
kn

ρ
+

n−1
∑

j=1

gj(ρ), ρ > 0, (3.21)

with the C1(R+)–functions, j = 1, ..., n − 1,

gj(ρ) :=







ln ρ +
kj

ρ
, ρ ≤ kj,

ln kj + 1, ρ ≥ kj.
(3.22)

Step 3:
Next we minimize f1(ρ)f3(ρ) w.r.t. ρ > 0. This yields the following condition for
ρmin:

nkt(f3 + ρf ′
3) = −ρ2f ′

3. (3.23)

Here,

f3(ρ) + ρf ′
3(ρ) = β + ln ρ + 1 +

n−1
∑

j=1

(gj + ρg′
j),

with

gj + ρg′
j =







ln ρ + 1, ρ ≤ kj,

ln kj + 1, ρ ≥ kj.
(3.24)

Hence, f3 + ρf ′
3 is strictly monotonic increasing in ρ > 0,

lim
ρ→0+

f3(ρ) + ρf ′
3(ρ) = −∞,

and
f3(kn) + knf

′
3(kn) = 2e(u0|MK(0)(. − x0)) ≥ 0.

On the other hand,

−ρ2f ′
3(ρ) = kn − ρ +

n−1
∑

j=1

(kj − ρ)H(kj − ρ)
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(with H denoting the Heaviside function) is strictly monotonic decreasing in ρ > 0,
positive on [0, kn), and it has a unique zero at ρ = kn. This implies that the equation
(3.23) has a unique solution ρmin with 0 < ρmin ≤ kn.

One easily checks that limρ→0+(f1f3)
′(ρ) = −∞. Moreover, f1 and f3 are both

strictly increasing on [kn,∞). Hence, (f1f3)(ρ) takes its unique minimum at ρ =
ρmin ≤ kn.

a) From (3.20) we hence conclude Emin = min(K(0), ρminI).
b) t = 0 implies ρmin = kn and hence Emin(0) = K(0).
c) For u0 6= MK(0)(. − x0), the monotonicity properties of both sides of (3.23) imply

that ρmin(t) is strictly decreasing in t, with

0 < ρ∞
min < ρmin(t) < kn ∀t > 0.

Here, ρ∞
min is the unique minimum of f3 + ρf ′

3 (cp. to the analogous situation in
Lemma 3 (d) and in Figure 1). Hence, (3.20) implies that the matrix Emin(t) is
decreasing w.r.t. t. In the case u0(x) = MK(0)(x − x0) we have Emin(t) = K(0).

Remark 13 (Radial Symmetric Case) In the special case of a radially symmet-
ric initial condition with covariance matrix K(0) = α

n
·I, the above Lemma 12 reduces

to Lemma 3 with Emin(t) = Emin(t) · I for t ≥ 0. Then, the condition (3.23) is equiv-
alent to

(

∫

Rn
u0(x) lnu0(x) dx +

n

2
ln(2πEmin(t)) +

n

2

)

kt =
α

2
− n

2
Emin(t).

Lemma 12 and Theorem 11 now directly yield an improved decay estimate in loga-
rithmic entropy (compared to the result of Theorem 10):

Theorem 14 (Improved Decay Estimate) Let u0 ∈ C(Rn)∩W 1,2
loc (Rn)∩L1

+(Rn)
be a probability density on R

n with finite second moment and entropy. Then the
solution u of the IVP (2.1) satisfies

e1(u(t)|MK+ktI(· − x0)) ≤
ρ(Emin(t))

ρ(Emin(t)) + nkt
e1(u0|MEmin(t)(· − x0)) = f(Emin(t), t)

(3.25)
with Emin(t) from Lemma 12 and Remark 13.

In particular, if K(0) = α
n
· I we have Emin(t) = Emin(t) · I for t ≥ 0, and Theorem

14 reduces to Theorem 4 for standard Gaussians.
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Markowich, G. Toscani, C. Villani, Entropies and Equilibria of Many-Particle Systems:
An Essay on Recent Research, Monatshefte für Mathematik 142 (2004) 35-43.

[3] A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities
and the rate of convergence to equilibrium for Fokker-Plack type equations, Comm.
PDE 26 (2001) 43-100.
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