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Abstract. We present a mathematical and numerical analysis on a control
model for the time evolution of a multi-layered piezoelectric cantilever with

tip mass and moment of inertia, as developed by Kugi and Thull [31]. This
closed-loop control system consists of the inhomogeneous Euler-Bernoulli beam
equation coupled to an ODE system that is designed to track both the position
and angle of the tip mass for a given reference trajectory. This dynamic

controller only employs first order spatial derivatives, in order to make the
system technically realizable with piezoelectric sensors. From the literature it
is known that it is asymptotically stable [31]. But in a refined analysis we first
prove that this system is not exponentially stable.

In the second part of this paper, we construct a dissipative finite element
method, based on piecewise cubic Hermitian shape functions and a Crank-
Nicolson time discretization. For both the spatial semi-discretization and the
full x− t–discretization we prove that the numerical method is structure pre-

serving, i.e. it dissipates energy, analogous to the continuous case. Finally,
we derive error bounds for both cases and illustrate the predicted convergence
rates in a simulation example.

1. Model

The Euler-Bernoulli beam (EBB) equation with tip mass is a well-established
model with a wide range of applications: for oscillations in telecommunication
antennas, or satellites with flexible appendages [2, 5], flexible wings of micro air
vehicles [8], and even vibrations of tall buildings due to external forces [41]. The
interest of engineers and mathematicians in the corresponding control problems
started in the 1980s. So various boundary control laws have been devised and
mathematically analyzed in the literature – with the stabilization of the system
being a key objective (cf. [34]). Soon afterwards, also exponentially stable con-
trollers were developed which require, however, higher order boundary controls for
an EBB with both applied tip mass and moment of inertia [42]. On the other hand,
if only a tip mass is applied, lower order controls are sufficient for exponential sta-
bilization [12]. In spite of this progress, and due to its widespread technological
applications, considerable research on EBB-control problems is still underway: In
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the more recent papers [22, 20] exponential stability of related control systems was
established by verifying the Riesz basis property. For the exponential stability of a
more general class of boundary control systems (including the Timoshenko beam)
in the port-Hamiltonian approach we refer to [49].

We shall analyze an inhomogeneous multi-layered piezoelectric EBB with applied
tip mass and moment of inertia, coupled to a dynamic controller that uses only low
order boundary measurements. This system was introduced by Kugi and Thull in
[31] to independently control the tip position and the tip angle of a piezoelectric
cantilever along prescribed trajectories. This beam is composed of piezoelectric
layers and the electrode shape of the layers was used as an additional degree of
freedom in the controller design. The sensor layers were given rectangular and
triangular shaped electrodes, so that the charge measured is proportional to the tip
deflection and the tip angle, respectively. The actuator layers were also assumed to
be covered with rectangular and triangular shaped electrodes, with the following
motivation: A voltage supplied to an actuator with rectangular (or triangular)
shaped electrodes acts in the same way on the structure as a bending moment
(or force) at the tip of the beam. The key issue of [31] was to devise a stable
feedback control model for that beam, such that it evolves asymptotically (as t →
∞) as a prescribed reference trajectory. More precisely, that controller allows to
track the position and the angle of the tip mass at the same time. To solve the
trajectory planning task, the concept of differential flatness (cf. [3]) was employed.
Thereby, the control inputs and the beam bending deflection were parametrized by
the flat outputs and their time derivatives. The boundary controller constructed
there has a dynamic design, thus coupling the governing PDEs of the beam with a
system of ODEs in the feedback part. In order to render the system experimentally
and technically realizable, it is crucial that the controller only involves boundary
measurements up to the first spatial derivative – at the (small) price of loosing
exponential stability (as we shall see here below).

The goal of the present paper is first to complete the analysis of [31], proving
that this hybrid system is asymptotically stable but not exponentially stable. This
part is an extension of Rao’s analysis [42] to dynamic controllers and inhomoge-
neous beams. In our second, and in fact main part we shall develop and analyze a
dissipative finite element method (FEM) for the control system.

Now we specify the problem under consideration, an inhomogeneous EBB of
length L, clamped at the left end x = 0, and with tip mass, moment of inertia, and
boundary control at x = L. In the following linear system (1.1)–(1.5), we actually
consider the evolution of the trajectory error system. So, u(t, x) denotes the devia-
tion of the actual beam deflection from the desired reference trajectory. Similarly,
Θ1,2(t) denote the difference between the applied voltages to the electrodes of the
piezoelectric layers and the ones specified by the feedforward controller.

µ(x)utt + (Λ(x)uxx)xx = 0, 0 < x < L, t > 0,(1.1)

u(t, 0) = 0, t > 0,(1.2)

ux(t, 0) = 0, t > 0,(1.3)

Juxtt(t, L) + (Λuxx)(t, L) + Θ1(t) = 0, t > 0,(1.4)

Mutt(t, L)− (Λuxx)x(t, L) + Θ2(t) = 0, t > 0.(1.5)

Here, µ ∈ C4[0, L] denotes the linear mass density of the beam and Λ ∈ C4[0, L] is
the flexural rigidity of the beam. Both functions are assumed to be strictly positive
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and bounded. M and J denote, respectively, the mass and the moment of inertia
of the rigid body attached at x = L. Equation (1.4) states that the beam bending
moment at x = L (i.e. Λ(L)uxx(t, L)) plus the bending moment of the tip body (i.e.
Juxtt(t, L)) is balanced by the control input −Θ1. Similarly, (1.5) describes that
the total force at the free end, equal to shear force at the tip (i.e. −(Λuxx)x(t, L))
plus the tip mass force Mutt, cancels with the control input Θ2.

The proposed control law has the goal to drive the error system to the zero state
as t→ ∞. It reads:

(1.6)

(ζ1)t(t) = A1ζ1(t) + b1uxt(t, L),
(ζ2)t(t) = A2ζ2(t) + b2ut(t, L),
Θ1(t) = k1ux(t, L) + c1 · ζ1(t) + d1uxt(t, L),
Θ2(t) = k2u(t, L) + c2 · ζ2(t) + d2ut(t, L),

with the auxiliary variables ζ1, ζ2 ∈ C([0,∞);Rn) and Θ1,Θ2 ∈ C[0,∞). Moreover,
A1, A2 ∈ Rn×n are Hurwitz1 matrices, b1, b2, c1, c2 ∈ Rn vectors and k1, k2, d1, d2 ∈
R. We assume that the coefficients k1 and k2 are positive and that the transfer
functions Gj(s) = (sI −Aj)

−1bj · cj + dj , j = 1, 2 satisfy

Re(Gj(iω)) ≥ dj ≥ δj > 0 ∀ω ≥ 0, j = 1, 2

for some constants δ1 and δ2. These assumptions imply that the transfer function
is strictly positive real, or shortly SPR (for its definition we refer to [24], [35]).
Then, it follows from the Kalman-Yakubovic-Popov Lemma (see [24], [35]) that
there exist symmetric positive definite matrices Pj , positive scalars εj , and vectors
qj ∈ Rn such that

(1.7)
PjAj +A>

j Pj = −qjq>j − εjPj ,

Pjbj = cj − qj

√
2(dj − δj),

for j = 1, 2. A SPR controller is defined as a controller with SPR transfer function.
One motivation for this controller design is the fact that, in the finite dimensional
case, the feedback interconnection of a passive system with a SPR controller yields
a stable closed-loop system. This principle of passivity based controller design
was generalized to the trajectory error dynamics of the multi-layered piezoelectric
cantilever in [31].

(1.1)–(1.6) constitute a coupled PDE–ODE system for the beam deflection u(x, t),
the position of its tip u(t, L), and its slope ux(t, L), as well as the two control vari-
ables ζ1(t), ζ2(t). The main mathematical difficulty of this system stems from the
high order boundary conditions (involving both x- and t- derivatives) which makes
the analytical and numerical treatment far from obvious. Well-posedness of this
system and asymptotic stability of the zero state were established in [31] using
semigroup theory on an equivalent first order system (in time), a carefully designed
Lyapunov functional, and LaSalle’s invariance principle.

In §2 we shall prove that this unique steady state is not exponentially stable.
Let us compare this result to a similar system studied in [39] and §5.3 of [35], which
also consists of an EBB coupled to a passivity based dynamic boundary control,
but without the tip mass. Then, that system is exponentially stable.

As an introduction for our dissipative finite element method (FEM) in §3, we
shall now briefly review several numerical strategies for the EBB from the literature.

1A square matrix is called a Hurwitz matrix if all its eigenvalues have negative real parts.
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In [48] the authors propose a conditionally stable, central difference method for
both the space and time discretization of the EBB equation. Their system models
a beam, which has a tip mass with moment of inertia on the free end. At the
fixed end a boundary control is applied in form of a control torque. Due to higher
order boundary conditions, fictitious nodes are needed at both boundaries. In [15]
the authors consider a damped, translationally cantilevered EBB, with one end
clamped into a moving base (as a boundary control) and a tip mass with moment
of inertia placed at the other. For their numerical treatment they considered a
finite number of modes, thus obtaining an ODE system. In [32] the EBB with one
free end (without tip mass, but with boundary torque control) was solved in the
frequency domain: After Laplace transformation in time, the resulting ODEs could
be solved explicitly.

The more elaborate approaches are based on FEMs: In [6] two space-time spec-
tral element methods are employed to solve a simply supported, nonlinear, modified
EBB subjected to forced lateral vibrations but with no mass attached: There, Her-
mitian polynomials, both in space and time, lead to strict stability limitations. But
a mixed discontinuous Galerkin formulation with Hermitian cubic polynomials in
space and Lagrangian spectral polynomials in time yields an unconditionally stable
scheme. In [13] the authors present a semi-discrete (using cubic splines) and fully
discrete Galerkin scheme (based on the Crank-Nicolson method) for the strongly
damped, extensible beam equation with both ends hinged. [4] considers a EBB with
tip mass at the free end, yielding a conservative hyperbolic system. The authors an-
alyze a cubic B-spline based Galerkin method (including convergence analysis of the
spatial semi-discretization) and put special emphasis on the subsequent parameter
identification problem.

All these FEMs are for models without boundary control. Hence, we shall develop
here a novel FEM for the mixed boundary control problem (1.1)-(1.6). There, the
damping only appears due to the boundary control. Hence, our main focus will be
on preserving the correct large-time behavior (i.e. dissipativity) in the numerical
scheme. Our FEM is based on the second order (in time) EBB equation (1.1) and
special care is taken for the boundary coupling to the ODE. In time we shall use
a Crank-Nicolson discretization, which was also the appropriate approach for the
decay of discretized parabolic equations in [1]. We remark that the modeling and
discretization of boundary control systems as port-Hamiltonian systems also has
this flavor of preserving the structure: For a general methodology on this spatial
semi-discretization (leading to mixed finite elements) and its application to the
telegrapher’s equations we refer to [18].

The paper is organized as follows: In §2 we first review the analytic setting from
[31] for the EBB with boundary control. While this closed-loop system is asymptot-
ically stable, we prove that it is not exponentially stable. Towards this analysis we
derive the asymptotic behavior of the eigenvalues and eigenfunctions of the coupled
system. In §3 we first discuss the weak formulation of our control system. Then
we develop an unconditionally stable FEM (along with a Crank-Nicolson scheme
in time), which dissipates an appropriate energy functional independently of the
chosen FEM basis. We shall also derive error estimates (second order in space and
time) of our scheme. In the numerical simulations of §4 we illustrate the proposed
method and verify its order of convergence w.r.t. h and ∆t.
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2. Non-exponential decay

First we recall from [31] the analytical setting for (1.1)–(1.6) in the framework of
semigroup theory. To cope with the higher order boundary conditions (1.4), (1.5)
and the boundary terms on the r.h.s. of (1.6), the terms ut(t, L), uxt(t, L) were
introduced as separate variables (following the spirit in earlier works [34, 20]). More
precisely, ψ = Mv(L) is the vertical momentum of the tip mass and ξ = Jvx(L)
its angular momentum, where v = ut is the velocity of the beam. Hence, we define
the Hilbert space

H := {z = (u, v, ζ1, ζ2, ξ, ψ)
> : u ∈ H̃2

0 (0, L), v ∈ L2(0, L), ζ1, ζ2 ∈ Rn, ξ, ψ ∈ R},

where H̃k
0 (0, L) := {u ∈ Hk(0, L)| u(0) = ux(0) = 0}, with the inner product

〈z, z̆〉 :=
1

2

∫ L

0

Λuxxŭxx dx+
1

2

∫ L

0

µvv̆ dx+
1

2J
ξξ̆ +

1

2M
ψψ̆

+
1

2
k1ux(L)ŭx(L) +

1

2
k2u(L)ŭ(L) +

1

2
ζ>1 P1ζ̆1 +

1

2
ζ>2 P2ζ̆2,

and ‖z‖H denotes the corresponding norm. Let A be a linear operator with the
domain

D(A) = {z ∈ H : u ∈ H̃4
0 (0, L), v ∈ H̃2

0 (0, L), ζ1, ζ2 ∈ Rn, ξ = Jvx(L), ψ =Mv(L)},

defined by

A


u
v
ζ1
ζ2
ξ
ψ

 =



v
− 1
µ (Λuxx)xx

A1ζ1 + b1
ξ
J

A2ζ2 + b2
ψ
M

−Λ(L)uxx(L)− k1ux(L)− c1 · ζ1 − d1
ξ
J

(Λuxx)x(L)− k2u(L)− c2 · ζ2 − d2
ψ
M

 .

Now we can write our problem as a first order evolution equation:

(2.1)
zt = Az,
z(0) = z0 ∈ H.

For a review of abstract boundary feedback systems in a semigroup formalism we
refer to [25]. The following well-posedness and stability result was obtained in
[31], for the homogeneous beam (i.e. for µ and Λ constant). The proof in the
inhomogeneous case is performed analogously. Note that the contractivity of the
semigroup also implies that ‖ · ‖H is a Lyapunov functional for (2.1).

Theorem 1. The operator A generates a C0-semigroup of contractions on H. For

any z0 ∈ H, (2.1) has a unique mild solution z ∈ C([0,∞);H) and z(t)
t→∞−→ 0 in

H.

But it remained an open question if this system is also exponentially stable. As
a criterion we will use the following theorem due to Huang [23], which was also
used for controlled EBBs without tip mass [10, 38]:

Theorem 2. Let T (t) be a uniformly bounded C0-semigroup on a Hilbert space
with infinitesimal generator A. Then T (t) is exponentially stable if and only if

(2.2) sup {Re(λ) : λ ∈ σ(A)} < 0
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and

(2.3) sup
λ∈R

‖R(iλ,A)‖ <∞

holds.

The following theorem is the main result of this section. Our proof of non-
exponential stability of system (2.1) relies on the asymptotic behavior of its eigen-
values. A related spectral analysis of the inhomogeneous EBB, but with a boundary
control torque is given in [20]. Below we extend this study to the case when a dy-
namic control law is applied.

Theorem 3. The operator A has eigenvalue pairs λn and λn, n ∈ N, with the
following asymptotic behavior:

λn = i

[(
(2n− 1)π

2h

)2

+
4hM−1µ(L)

3
4Λ(L)

1
4 − I

2h2

]
+O(n−1),

where

(2.4) h :=

∫ L

0

(
µ(w)

Λ(w)

) 1
4

dw,

and I is a real constant depending only on Λ, µ, and given by (2.28). Therefore,

sup {Re(λ) : λ ∈ σ(A)} = 0,

and hence the evolution problem (2.1) is not exponentially stable.

Proof. We already know that the operator A has a compact resolvent (see [31]).
Thus, its spectrum σ(A) consists entirely of isolated eigenvalues, at most countably
many, and each eigenvalue has a finite algebraic multiplicity. Since A also generates
an asymptotically stable C0-semigroup of contractions we obtain

Reλ < 0, ∀λ ∈ σ(A).

The matrices A1 and A2 are Hurwitz matrices and therefore only have eigenvalues
with negative real parts. The set σ(A) ∩ (σ(A1) ∪ σ(A2)) ⊂ C is therefore empty
or finite. Now we consider only such eigenvalues λ of the operator A that are not
eigenvalues of A1 or A2. Then z = (u, v, ζ1, ζ2, ξ, ψ)

> ∈ D(A) is a corresponding
eigenvector if and only if:

v = λu,

ζ1 = −λux(L) (A1 − λI)
−1
b1,

ζ2 = −λu(L) (A2 − λI)
−1
b2,

and

(Λuxx)xx + µλ2u = 0,(2.5)

u(0) = 0,(2.6)

ux(0) = 0,(2.7)

Λ(L)uxx(L) + (k1 − λ[(A1 − λI)
−1
b1] · c1 + λd1 + λ2J)ux(L) = 0,(2.8)

− (Λuxx)x (L) + (k2 − λ[(A2 − λI)
−1
b2] · c2 + λd2 + λ2M)u(L) = 0.(2.9)
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In order to solve (2.5)–(2.9), we perform spatial transformations as in [21], which
convert (2.5) into a more convenient form. First, (2.5) is rewritten as:

(2.10) uxxxx +
2Λx
Λ

uxxx +
Λxx
Λ
uxx +

µ

Λ
λ2u = 0.

Then a space transformation is introduced, so that the coefficient appearing with
u in (2.10) becomes constant. Let u(x) = ŭ(y), where

(2.11) y = y(x) :=
1

h

∫ x

0

(
µ(w)

Λ(w)

) 1
4

dw,

with h defined as in (2.4). Then, from (2.6)–(2.10) it follows that ŭ satisfies:

(2.12)

ŭyyyy + α3ŭyyy + α2ŭyy + α1ŭy + h4λ2ŭ = 0,
ŭ(0) = 0,
ŭy(0) = 0,

ŭyy(1) + ŭy(1) (β0 + κ1(λ)) = 0,
−ŭyyy(1) + β1ŭyy(1) + β2ŭy(1) + κ2(λ)ŭ(1) = 0,

with

(2.13) α3(y) = h
(
µ(x)
Λ(x)

)− 1
4
(

3
2
µx(x)
µ(x) + 1

2
Λx(x)
Λ(x)

)
,

(2.14)
α2(y) = 1

h2

{
− 9

16

(
µ(x)
Λ(x)

)− 3
2
[(

µ(x)
Λ(x)

)
x

]2
+
(
µ(x)
Λ(x)

)− 1
2
(
µ(x)
Λ(x)

)
xx

+ 3
2
Λx(x)
Λ(x)

(
µ(x)
Λ(x)

)− 1
2
(
µ(x)
Λ(x)

)
x
+ Λxx(x)

Λ(x)

(
µ(x)
Λ(x)

) 1
2

}
,

and α1 is a smooth function of h, dkΛ
dxk , and dkµ

dxk for k = 0, 1, 2, 3. The coeffi-

cients β0, β1, β2 are constants, depending on h, d
kΛ
dxk (L), and

dkµ
dxk (L) for k = 0, 1, 2.

Furthermore, we have introduced the following notation:

κ1(λ) := h
Λ(L)

(
µ(L)
Λ(L)

)− 1
4
(
k1 − λ

(
(A1 − λI)

−1
b1

)
· c1 + λd1 + λ2J

)
,

κ2(λ) := h3

Λ(L)

(
µ(L)
Λ(L)

)− 3
4
(
k2 − λ

(
(A2 − λI)

−1
b2

)
· c2 + λd2 + λ2M

)
.

In order to solve (2.12), we use the strategy as in Chapter 2, Section 4 of [40]. Hence,
to eliminate the third derivative term α3ŭyyy, a new invertible space transformation
is introduced:

ŭ(y) = e−
1
4

∫ y
0
α3(z) dzũ(y).

Then (2.12) becomes:

ũyyyy + α̃2ũyy + α̃1ũy + α̃0ũ+ h4λ2ũ = 0,(2.15)

ũ(0) = 0,(2.16)

ũy(0) = 0,(2.17)

ũyy(1) + ũy(1) (β3 + κ1(λ)) + ũ(1)

(
β4 −

1

4
α3(1)κ1(λ)

)
= 0,(2.18)

−ũyyy(1) + β5ũyy(1) + β6ũy(1) + (β7 + κ2(λ)) ũ(1) = 0,(2.19)

where

(2.20) α̃2(y) = α2(y)−
3

8
α3(y)

2 − 3

2
(α3)y(y),
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and α̃1, α̃0 are smooth functions of h, d
kΛ
dxk , and

dkµ
dxk for k = 0, . . . , 4. The constant

coefficients β3, . . . , β7 depend on h, dkΛ
dxk (L), and

dkµ
dxk (L) for k = 0, . . . , 3. Due to

the invertibility of the above transformations, the obtained problem (2.15)–(2.19)
is equivalent to the original problem (2.5)–(2.9).

Since the eigenvalues of A come in complex conjugated pairs, and have negative
real parts, it suffices to consider only those λ in the upper-left quarter-plane, i.e.
such that arg λ ∈ (π2 , π]. We define the unique τ ∈ C such that Re(τ) ≥ 0, and

λ = i τ
2

h2 . It can be seen that arg τ ∈ (0, π4 ]. Now, the solution to (2.15) can be
approximated by the solution to the differential equation with the dominant terms
only, i.e. ũxxxx + λ2h4ũ = 0. More precisely, we have (by adaptation of Satz 1, pp.
42 of [40]; and the last result of Lemma 2.1 is stated in the proof of Satz 1 ):

Lemma 2.1. For τ ∈ (0, π4 ], and |τ | large enough, there exist linearly independent

solutions {γj}4j=1, to (2.15), such that:

(2.21)
γj(y) = eωjτy (1 + fj(y)) ,
dk

dyk
γj(y) = (ωjτ)

keωjτy
(
1 + fj(y) +O(|τ |−2)

)
, k ∈ {1, 2, 3},

where ω1 = 1, ω2 = i, ω3 = −1, ω4 = −i, and

fj(y) = −
∫ y
0
α̃2(w) dw

4ωjτ
+O(|τ |−2), as |τ | → ∞, j = 1, . . . , 4.

Furthermore, the functions dk

dyk
γj depend analytically on τ , for j = 1, . . . , 4, k =

0, . . . , 3, and |τ | large enough.

Now, due to Lemma 2.1, the solution to (2.15)–(2.19) can be written as:

ũ(y) = C1γ1(y) + C2γ2(y) + C3γ3(y) + C4γ4(y),

where the constants {Cj}4j=1 are determined by the boundary conditions (2.16) –
(2.19), and therefore satisfy the following linear system:

(2.22)

0 = C1γ1(0) + C2γ2(0) + C3γ3(0) + C4γ4(0),
0 = C1(γ1)y(0) + C2(γ2)y(0) + C3(γ3)y(0) + C4(γ4)y(0),

0 =
∑4
i=1 Cim3 i,

0 =
∑4
i=1 Cim4 i,

where we define:

m3 i := (γi)yy(1) + (β3 + κ1(λ))(γi)y(1) + (β4 −
1

4
α3(1)κ1(λ))γi(1),

m4 i := −(γi)yyy(1) + β5(γi)yy(1) + β6(γi)y(1) + (β7 + κ2(λ))γi(1).

From (2.21) easily follows:
(2.23)

γj(0) = 1 + fj(0), (γj)y(0) = ωjτ(1 + fj(0) +O(|τ |−2)), j = 1, . . . , 4,
m31 = eτ

(
(l1τ

5 + l2τ
4)(1 + f1(1)) +O(|τ |3)

)
,

m41 = eτ
(
(l3τ

4 − τ3)(1 + f1(1)) +O(|τ |3)
)
,

m32 = eiτ
(
(il1τ

5 + l2τ
4)(1 + f2(1)) +O(|τ |3)

)
,

m42 = eiτ
(
(l3τ

4 + iτ3)(1 + f2(1)) +O(|τ |2)
)
,

m33 = e−τ
(
(−l1τ5 + l2τ

4)(1 + f3(1)) +O(|τ |3)
)
,

m43 = e−τ
(
(l3τ

4 + τ3)(1 + f3(1)) +O(|τ |2)
)
),

m34 = e−iτ
(
(−il1τ5 + l2τ

4)(1 + f4(1)) +O(|τ |3)
)
,

m44 = e−iτ
(
(l3τ

4 − iτ3)(1 + f4(1)) +O(|τ |2)
)
,
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with

l1 := − J

h3Λ(L)

(
µ(L)

Λ(L)

)− 1
4

, l2 :=
Jα3(1)

4h3Λ(L)

(
µ(L)

Λ(L)

)− 1
4

, l3 := − M

hΛ(L)

(
µ(L)

Λ(L)

)− 3
4

.

For ũ to be nontrivial, the determinant of the system (2.22) has to vanish:

(2.24)

∣∣∣∣∣∣∣∣
γ1(0) γ2(0) γ3(0) γ4(0)

(γ1)y(0) (γ2)y(0) (γ3)y(0) (γ4)y(0)
m31 m32 m33 m34

m41 m42 m43 m44

∣∣∣∣∣∣∣∣ = 0.

Next we shall write (2.24) in an asymptotic form when Re(τ) is large:

(2.25) B1(m31m44 −m41m34) +B2(m31m42 −m41m32) +O(|τ |10) = 0,

where

(2.26)
B1 := −(1 + i) [1 + f2(1) + f3(1)] +O(|τ |−2),
B2 := (1− i) [1 + f3(1) + f4(1)] +O(|τ |−2).

Noting only the terms with leading powers of τ in (2.25), and after division by
eττ10, we obtain

cos τ − τ−1(
I

4
+

1

l3
)(cos τ + sin τ) +O(|τ |−2) = 0,(2.27)

where

(2.28) I :=

∫ 1

0

α̃2(w) dw.

We set k = n − 1
2 for n ∈ N sufficiently large and consider equation (2.27) for τ

in a neighborhood of kπ. We shall apply Rouché’s Theorem (see [26], e.g.) to the
equation (2.27), written as

(2.29) cos τ + f(τ) = 0,

where f(τ) = O(|τ |−1). Consider cos τ on a simple closed contour K ⊂ {(n−1)π ≤
Re(τ) ≤ nπ} “around” τ = kπ such that | cos τ | ≥ 1 on K. For n large enough,
the holomorphic function f satisfies |f(z)| < 1 ≤ | cos τ | on K. Since τ = kπ is the
only zero of cos τ inside K, Rouché’s Theorem implies that (2.29) has also exactly
one solution inside K:

(2.30) τn = kπ + hn.

Then, cos τn = (−1)n sinhn. Furthermore, (2.29) implies hn = O(n−1). To make
the asymptotic behavior of hn more precise, we consider

sin τn = −(−1)n coshn = −(−1)n +O(n−2),

cos τn = (−1)n hn +O(n−3).

Using this in (2.27) we get

hn + τ−1(
1

l3
+
I

4
) +O(n−2) = 0.

Finally, this yields

hn =
4hM−1µ(L)

3
4Λ(L)

1
4 − I

4kπ
+O(n−2),
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and (2.30) implies

(2.31) λn = i
(τn
h

)2
= i

[(
kπ

h

)2

+
4hM−1µ(L)

3
4Λ(L)

1
4 − I

2h2

]
+O(n−1).

Hence, condition (2.2) fails and T (t) is not exponentially stable. �
In Figure 1 we show the eigenvalue pairs corresponding to the simulation example

from §4. They were obtained by application of Newton’s method to the equation
(2.24).

−0.08 −0.04 0
−4000

−2000

0

2000

4000

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figure 1. The eigenvalues λn of the system approach the imagi-
nary axis as n→ ∞.

Remark 2.2. It can also be shown that the condition (2.3) does not hold. In
particular, it can be shown that there is a constant C, a sequence {µn} ⊂ R
diverging to +∞, and a sequence {zn} ⊂ D(A) such that

‖R(iµn,A)zn‖H
‖zn‖H

> Cµn, for all n large enough.

But since the details of this calculation are rather technical we only present them
in [36].

Remark 2.3. We shall now comment on the asymptotic behavior of the eigenfunc-
tions of A. The solution to (2.15)–(2.19) for τ = τn has the form (see [40]):

ũn(y) =

∣∣∣∣∣∣∣∣
γ1(0) γ2(0) γ3(0) γ4(0)

(γ1)y(0) (γ2)y(0) (γ3)y(0) (γ4)y(0)
m31 m32 m33 m34

γ1(y) γ2(y) γ3(y) γ4(y)

∣∣∣∣∣∣∣∣ ,
up to a multiplicative constant. Using the Laplace expansion of the determinant
and scaling the expression with e−ττ−6 1

l12i
, ũn has the approximate form (for n

large):

ũn(y) = e−(n− 1
2 )πy−cos

(
(n− 1

2
)πy

)
+sin

(
(n− 1

2
)πy

)
+(−1)ne(n−

1
2 )π(y−1)+O(n−1),
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for 0 ≤ y ≤ 1. Therefore, the function un corresponding to the eigenvalue λn has
the following asymptotic property:

un(x) = e−
1
4

∫ y
0
α3(z) dz

[
e−(n− 1

2 )πy − cos

(
(n− 1

2
)πy

)
+ sin

(
(n− 1

2
)πy

)
+(−1)ne(n−

1
2 )π(y−1) +O(n−1)

]
,

where 0 ≤ x ≤ L, with y = y(x) and α3 as in (2.11) and (2.13).

Remark 2.4. The uncontrolled system (i.e. with A1,2 = 0, d1,2 = 0) is undamped
and its operator A then has purely imaginary eigenvalues. But their asymptotic
behavior is still like in Theorem 3, as can be verified by the analogue of the above
computation.

3. Dissipative FEM method

From Theorem 1 we know that the norm of the solution z(t) decreases in time.
Using (1.7), a straightforward calculation (for a classical solution) yields:

d

dt
‖z‖2H = −δ1uxt(L)2 −

1

2

(
ζ1 · q1 + δ̃1uxt(L)

)2
−δ2ut(L)2 −

1

2

(
ζ2 · q2 + δ̃2ut(L)

)2
(3.1)

−ε1
2
ζ>1 P1ζ1 −

ε2
2
ζ>2 P2ζ2 ≤ 0,

where δ̃j =
√
2(dj − δj), j = 1, 2. Note that the r.h.s. of (3.1) only involves bound-

ary terms of the beam and the control variables. Hence, d
dt‖z‖

2
H = 0 does not imply

z = 0 (which can easily be verified from (2.1)).
The goal of this section is to derive a FEM for (1.1)–(1.5) coupled to the ODE-

system (1.6) that preserves this structural property of dissipativity. The importance
of this feature is twofold: For long-time computations, the numerical scheme must
of course be convergent in the classical sense (i.e. on finite time intervals) but also
yield the correct large-time limit. Moreover, dissipativity of the scheme implies
immediately unconditional stability.

Here we shall construct first a time-continuous and then a time-discrete FEM
that both dissipate the norm in time. Let us briefly discuss the different options
to proceed. (2.1) is an inconvenient starting point for deriving a weak formulation
due to the high boundary traces of u at x = L: The natural regularity of a weak
solution would be u ∈ C([0,∞); H̃2

0 (0, L)), v = ut ∈ C([0,∞);L2(0, L)). Hence, the
terms Λ(L)uxx(t, L), (Λuxx)x(t, L) in (2.1) could only be incorporated by resorting
to the boundary conditions (1.4), (1.5). Therefore we shall rather start from the
original second order system (1.1)–(1.6).

3.1. Weak formulation. In order to derive the weak formulation, we assume the
following initial conditions

u(0) = u0 ∈ H̃2
0 (0, L),(3.2a)

ut(0) = v0 ∈ L2(0, L),(3.2b)

ζ1(0) = ζ1,0 ∈ Rn,(3.2c)

ζ2(0) = ζ2,0 ∈ Rn.(3.2d)
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Moreover, let v0(L) and (v0)x(L) be given in addition to the function v0, and not

as its trace. Multiplying (1.1) by w ∈ H̃2
0 (0, L), integrating over [0, L], and taking

into account the given boundary conditions we obtain:∫ L

0

µuttw dx+

∫ L

0

Λuxxwxx dx+Mutt(t, L)w(L) + Juttx(t, L)wx(L)

+k1ux(t, L)wx(L) + k2u(t, L)w(L) + d1utx(t, L)wx(L) + d2ut(t, L)w(L)(3.3)

+c1 · ζ1(t) wx(L) + c2 · ζ2(t) w(L) = 0, ∀w ∈ H̃2
0 (0, L), t > 0.

This identity will motivate the weak formulation. First, we define the Hilbert space

H := R× R× L2(0, L),

with inner product

(ϕ̂, ν̂)H := J (1ϕ̂) (1ν̂) +M (2ϕ̂) (2ν̂) + (µ 3ϕ̂, 3ν̂)L2 ,

for ϕ̂ = (1ϕ̂, 2ϕ̂, 3ϕ̂), ν ∈ H. We also define the Hilbert space

V := {ŵ = (wx(L), w(L), w) : w ∈ H̃2
0 (0, L)},

with the inner product

(ŵ1, ŵ2)V = (Λ(w1)xx, (w2)xx)L2 .

It can be shown that V is densely embedded in H. Therefore taking H as a pivot
space, we have the Gelfand triple

V ⊂ H ⊂ V ′.

For any fixed T > 0 we now define û = (ux(L), u(L), u) and ζ1, ζ2 to be the weak
solution to (1.1)–(1.6) and (3.2) if

û ∈ L2(0, T ;V ) ∩H1(0, T ;H) ∩H2(0, T ;V ′),

ζ1, ζ2 ∈ H1(0, T ;Rn)

and it satisfies:

(3.4) V ′ < ûtt, ŵ >V +a(û, ŵ) + b(ût, ŵ) + e1(ζ1, ŵ) + e2(ζ2, ŵ) = 0,

for a.e. t ∈ (0, T ),∀ŵ ∈ V . The bilinear form V ′ < ., . >V is the duality pairing
between V and V ′ as a natural extension of the inner product in H. The bilinear
forms a : V × V → R, b : H ×H → R and e1, e2 : Rn × V → R are given by

a(ŵ1, ŵ2) = (ŵ1, ŵ2)V + k1(w1)x(L)(w2)x(L) + k2w1(L)w2(L),

b(ϕ̂, ν̂) = d1(
1ϕ̂)(1ν̂) + d2(

2ϕ̂)(2ν̂),

e1(ζ1, ŵ) = c1 · ζ1wx(L),
e2(ζ2, ŵ) = c2 · ζ2w(L).

Equation (3.4) is coupled to the ODEs

(ζ1)t(t) = A1ζ1(t) + b1 (
1ût(t)),

(ζ2)t(t) = A2ζ2(t) + b2 (
2ût(t)),

(3.5)
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with initial conditions

û(0) = û0 = ((u0)x(L), u0(L), u0) ∈ V,(3.6a)

ût(0) = v̂0 = ((v0)x(L), v0(L), v0) ∈ H,(3.6b)

ζ1(0) = ζ1,0 ∈ Rn,(3.6c)

ζ2(0) = ζ2,0 ∈ Rn.(3.6d)

In (3.6a) the first two components of the right hand side are the boundary traces of

u0 ∈ H̃2
0 (0, L), but in (3.6b) they are additionally given values. Note that in the case

when û ∈ H2(0, T ;V ), formulation (3.4) is equivalent to identity (3.3). This weak
formulation is an extension of [4](Section 2) to the case where the beam with the
tip-mass is additionally coupled to the first order ODE controller system. Here, we
have to deal also with ut(L) and utx(L). And these additional first order boundary
terms (in t), included in b(., .), require a slight generalization of the standard theory
(as presented in §8 of [33], e.g.).

In order to give a meaning to the initial conditions (3.6a), (3.6b) we shall use
the following lemma (special case of Theorem 3.1 in [33]).

Lemma 3.1. Let X and Y be two Hilbert spaces, such that X is dense and con-
tinuously embedded in Y . Assume that

u ∈ L2(0, T ;X),

ut ∈ L2(0, T ;Y ).

Then

u ∈ C([0, T ]; [X,Y ] 1
2
]),

after, possibly, a modification on a set of measure zero. Here, the definition of
intermediate spaces as given in [33], §2.1, was assumed.

Theorem 4. (a) The weak formulation (3.4) – (3.6) has a unique solution (û, ζ1, ζ2).
(b) The weak solution has the additional regularity

û ∈ L∞(0, T ;V ), ût ∈ L∞(0, T ;H),(3.7a)

ζ1, ζ2 ∈ C([0, T ];Rn),(3.7b)

û ∈ C([0, T ]; [V,H] 1
2
),(3.7c)

ût ∈ C([0, T ]; [V,H]
′
1
2
).(3.7d)

Furthermore, even stronger continuity for the weak solution can be shown:

Theorem 5. After, possibly, a modification on a set of measure zero, the weak
solution û of (3.4)-(3.6) satisfies

û ∈ C([0, T ];V ),

ût ∈ C([0, T ];H).

The proofs of Theorem 4 and 5 are given in Appendix A.

3.2. Semi-discrete scheme: space discretization. Now let Wh ⊂ H̃2
0 (0, L) be

a finite dimensional space. Its elements are globally C1[0, L], due to a Sobolev em-
bedding. For some fixed basis wj , j = 1, . . . , N the Galerkin approximation of (3.4)
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reads: Find uh ∈ C2([0,∞),Wh), i.e. ûh = ((uh)x(L), uh(L), uh) ∈ C2([0,∞), V ),

and ζ̃1,2 ∈ C1([0,∞),Rn) with
(3.8) ∫ L

0
µ(uh)ttwj dx+

∫ L
0
Λ(uh)xx(wj)xx dx

+M(uh)tt(t, L)wj(L) + J(uh)xtt(t, L)(wj)x(L)
+k1(uh)x(t, L)(wj)x(L) + k2uh(t, L)wj(L)
+d1(uh)xt(t, L)(wj)x(L) + d2(uh)t(t, L)(wj)(L)

+c1 · ζ̃1(t) (wj)x(L) + c2 · ζ̃2(t) wj(L) = 0, j = 1, . . . , N, t > 0,

coupled to the analogue of (3.5):

(ζ̃1)t(t) = A1ζ̃1(t) + b1(uh)xt(t, L),

(ζ̃2)t(t) = A2ζ̃2(t) + b2(uh)t(t, L),
(3.9)

and the initial conditions

uh(0, . ) = uh,0 ∈Wh,

(uh)t(0, . ) = vh,0 ∈Wh,

ζ̃1(0) = ζ1,0 ∈ Rn,
ζ̃2(0) = ζ2,0 ∈ Rn.

(3.8) is a second order ODE-system in time. Expanding its solution in the chosen
basis, i.e.

uh(t, x) =
N∑
i=1

Ui(t)wi(x),

and denoting its coefficients by the vector

U =
[
U1 U2 . . . UN

]>
yields the equivalent vector equation:

(3.10) AUtt + BUt +KU+ C(t) = 0.

Its coefficient matrices are defined as

Ai,j :=

∫ L

0

µwiwj dx+Mwi(L)wj(L) + J(wi)x(L)(wj)x(L),

Bi,j := d1(wi)x(L)(wj)x(L) + d2wi(L)wj(L),

Ki,j :=

∫ L

0

Λ(wi)xx(wj)xx dx+ k1(wi)x(L)(wj)x(L) + k2wi(L)wj(L),

i, j = 1, . . . , N,

and the vector C has the entries

Cj(t) = c1 · ζ̃1(t) (wj)x(L) + c2 · ζ̃2(t) wj(L), j = 1, . . . , N.

The matrix K is symmetric positive definite, since we assumed k1,2 > 0. Since also
A is symmetric positive definite, one sees very easily that the IVP corresponding
to the coupled problem (3.10), (3.9) is uniquely solvable.

For a final specification of the FEM we need to choose an appropriate discrete
space. Only for notational simplicity, we shall assume a uniform distribution of
nodes on [0, L]:

xm = mh, m ∈ {0, 1, . . . , P},
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where h = L
P . A standard choice for the discrete space Wh is a space of piece-

wise cubic polynomials with both displacement and slope continuity across element
boundaries, also called Hermitian cubic polynomials (see [44], [6], e.g.). They have
been employed not only for the Euler-Bernoulli beam, but also Timoshenko beams
(cf. [17]). To define a basis for Wh (Hermite cubic basis, see e.g. [43]), we associate
two piecewise cubic functions with each node xm, m ≥ 1 satisfying:

w2m−1(xk) =

{
1, m = k
0, m 6= k

w′
2m−1(xk) = 0,

w′
2m(xk) =

{
1, m = k
0, m 6= k

w2m(xk) = 0,

for all k = 0, . . . , P . Hence, the nodal values of a function and of its derivative
are the associated degrees of freedom. Due to the boundary conditions at x = 0 in
Wh ⊂ H̃2

0 , the basis set does not include the functions w−1 and w0 associated to the
node x0 = 0. Thus, N = 2P . For the coupling to the control variables we shall need
the boundary values of uh. The above basis yields the simple relations uh(t, L) =
UN−1(t), (uh)x(t, L) = UN (t). Compact support of the basis functions {wj}Nj=1

leads to a sparse structure of the matrices A, B, and K: A and K are tridiagonal, B
is diagonal with only two non-zero elements BN−1,N−1 = d2, BN,N = d1. And the

vector C has all zero entries except for CN−1 = c2 · ζ̃2, CN = c1 · ζ̃1.
Next, we shall show that the semi-discrete solution uh(t) decreases in time. As an

analogue of the norm ‖z(t)‖H from §2, we first define the following time dependent

functional for a trajectory u ∈ C2([0,∞); H̃2
0 (0, L)) and ζ1,2 ∈ C1([0,∞);Rn):

E(t;u, ζ1, ζ2) :=
1

2

∫ L

0

(
Λuxx(t, x)

2 + µut(t, x)
2
)
dx+

M

2
ut(t, L)

2 +
J

2
uxt(t, L)

2

+
k1
2
ux(t, L)

2 +
k2
2
u(t, L)2 +

1

2
ζ>1 (t)P1ζ1(t) +

1

2
ζ>2 (t)P2ζ2(t).(3.11)

For a classical solution of (2.1) in D(A) we have E(t;u, ζ1, ζ2) = ‖z(t)‖2H.

Theorem 6. Let uh ∈ C2([0,∞); H̃2
0 (0, L)) and ζ̃1,2 ∈ C1([0,∞);Rn) solve (3.8),

(3.9). Then it holds for t > 0:

d

dt
E(t;uh, ζ̃1, ζ̃2) = −ε1

2
ζ̃>1 P1ζ̃1 −

1

2

(
ζ̃1 · q1 + δ̃1(uh)xt(L)

)2
− δ1(uh)xt(L)

2

−ε2
2
ζ̃>2 P2ζ̃2 −

1

2

(
ζ̃2 · q2 + δ̃2(uh)t(L)

)2
− δ2(uh)t(L)

2 ≤ 0.

Proof. In the following computation we use (3.8) with the test function wh = (uh)t:

d

dt
E(t;uh, ζ̃1, ζ̃2) =

∫ L

0

Λ(uh)xx(uh)xxt dx+

∫ L

0

µ(uh)t(uh)tt dx

+M(uh)t(L)(uh)tt(L) + J(uh)tx(L)(uh)ttx(L)

+k1(uh)x(L)(uh)xt(L) + k2(uh)(L)(uh)t(L)

+ζ̃>1 P1(ζ̃1)t + ζ̃>2 P2(ζ̃2)t

= −d1(uh)xt(L)2 − d2(uh)t(L)
2

−c1 · ζ̃1(uh)xt(L)− c2 · ζ̃2(uh)t(L) + ζ̃>1 P1(ζ̃1)t + ζ̃>2 P2(ζ̃2)t,

and the result follows with (3.9) and (1.7). �
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In the undamped case (i.e. Aj = 0, dj = 0) the energy E is clearly preserved in
the semi-discrete system. Furthermore, it has been shown in the proof of Theorem
5 that the energy functional for the weak solution û, ζ1, ζ2 of (3.4) - (3.6) has an
analogous dissipative property, cf. (5.13).

3.3. Error estimates: semi-discrete scheme. Since using cubic polynomials
for the space approximation, we shall obtain accuracy of order two in space (in
H2(0, L)). Thereby, the common method for obtaining error estimates (cf. [13])
will be adjusted to the problem at hand. With ũ we denote the nodal projection of
the weak solution u to Wh, defined in terms of Hermite polynomials:

ũ(t, x) =
P∑

m=1

u(t, xm)w2m−1(x) +
P∑

m=1

ux(t, xm)w2m(x).

Assuming that

(3.12)

u ∈ C([0, T ]; H̃4
0 (0, L)),

ut ∈ L2(0, T ; H̃4
0 (0, L)),

utt ∈ L2(0, T ; H̃2
0 (0, L)),

it can be seen (e.g. in [7], [13]) that a.e. in t:

(3.13)
‖u− ũ‖H2(0,L) ≤ Ch2‖u‖H4(0,L),

‖ut − ũt‖H2(0,L) ≤ Ch2‖ut‖H4(0,L),
‖utt − ũtt‖L2(0,L) ≤ Ch2‖utt‖H2(0,L).

We define the error of the semi-discrete solution (uh, ζ̃1, ζ̃2) as εh := uh − ũ ∈ Wh

and ζei := ζ̃i − ζi, i = 1, 2. Then using (3.8)–(3.9) we obtain

∫ L
0
µ(εh)ttw dx+

∫ L
0
Λ(εh)xxwxx dx

+M(εh)tt(t, L)w(L) + J(εh)xtt(t, L)wx(L)
+k1(εh)x(t, L)wx(L) + k2εh(t, L)w(L)
+d1(εh)xt(t, L)wx(L) + d2(εh)t(t, L)w(L)
+c1 · ζe1(t) wx(L) + c2 · ζe2(t) w(L)
=
∫ L
0
µ(utt − ũtt)w dx+

∫ L
0
Λ(uxx − ũxx)wxx dx, ∀w ∈Wh, t > 0,

coupled to:

(ζe1)t(t) = A1ζ
e
1(t) + b1(εh)xt(t, L),

(ζe2)t(t) = A2ζ
e
2(t) + b2(εh)t(t, L).

Using w = (εh)t and proceeding as in the proof of Theorem 6 we obtain
(3.14)

1
2
d
dtE(t; εh, ζ

e
1 , ζ

e
2) ≤

∫ L
0
µ(utt − ũtt)(εh)t dx+

∫ L
0
Λ(uxx − ũxx)(εh)txx dx,

for a.e. t ∈ [0, T ]. Integrating (3.14) in time, and performing partial integration,
we get

(3.15)

E(t; εh, ζ
e
1 , ζ

e
2) ≤ E(0; εh(0), ζ

e
1(0), ζ

e
2(0))

+ 2
∫ t
0

∫ L
0
µ(utt(s, x)− ũtt(s, x))(εh)t(s, x) dx ds

+ 2
∫ L
0
Λ(uxx(t, x)− ũxx(t, x))(εh)xx(t, x) dx

+ 2
∫ L
0
Λ(uxx(0, x)− ũxx(0, x))(εh)xx(0, x) dx

− 2
∫ t
0

∫ L
0
Λ(utxx(s, x)− ũtxx(s, x))(εh)xx(s, x) dx ds.
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Applying Chauchy-Schwarz to (3.15) yields:
(3.16)
E(t; εh, ζ

e
1 , ζ

e
2) ≤ E(0; εh(0), ζ

e
1(0), ζ

e
2(0))

+µmax

(
‖utt − ũtt‖2L2(0,T ;L2(0,L)) +

∫ t
0
‖(εh)t(s, .)‖2L2(0,L) ds

)
+Λmax

(
8‖uxx(t, .)− ũxx(t, .)‖2L2(0,L) +

1
8‖(εh)xx(t, .)‖

2
L2(0,L)

+8‖uxx(0, .)− ũxx(0, .)‖2L2(0,L) +
1
8‖(εh)xx(0, .)‖

2
L2(0,L)

+ ‖ut − ũt‖2L2(0,T ;H2(0,L)) +
∫ t
0
‖(εh)xx(s, .)‖2L2(0,L) ds

)
,

where µmax = maxx∈[0,L] µ(x) and Λmax = maxx∈[0,L] Λ(x). Next, we use (3.13) to
obtain:
(3.17)

3
4E(t; εh, ζ

e
1 , ζ

e
2) ≤ 5

4E(0; εh(0), ζ
e
1(0), ζ

e
2(0)) + 2

∫ t
0
E(s; εh, ζ

e
1 , ζ

e
2) ds

+Ch4
(
‖u‖2C([0,T ];H4(0,L)) + ‖ut‖2L2(0,T ;H4(0,L)) + ‖utt‖2L2(0,T ;H2(0,L))

)
.

Gronwall inequality applied to (3.17) gives:

(3.18)
E(t; εh, ζ

e
1 , ζ

e
2) ≤ C

(
E(0; εh(0), ζ1e(0), ζ2e(0))

+ h4
(
‖u‖2C([0,T ];H4(0,L)) + ‖ut‖2L2(0,T ;H4(0,L)) + ‖utt‖2L2(0,T ;H2(0,L))

))
.

Finally, we have:

Theorem 7. Assuming (3.12), the following error estimate of the semidiscrete
solution holds:

E(t;uh − u, ζ̃1 − ζ1, ζ̃2 − ζ2)
1
2 ≤ C

(
E(0; εh(0), ζ1e(0), ζ2e(0))

1
2

+ h2
(
‖utt‖L2(0,T ;H2(0,L)) + ‖ut‖L2(0,T ;H4(0,L)) + ‖u‖C([0,T ];H4(0,L))

))
,(3.19)

0 ≤ t ≤ T .

Proof. The result follows from (3.13), (3.18), and the triangle inequality. �

3.4. Fully discrete scheme: time discretization. For the numerical solution
to the ODE (3.10) we first write it as a first order system and then use the Crank-
Nicolson scheme, which is crucial for the dissipativity of the scheme. To this end
we introduce vh := (uh)t, and V := Ut = [ V1 V2 ... VN ]> is its representation
in the basis {wj}. The solution of the system (3.8), (3.9) is then the vector zh =

[uh vh ζ̃1 ζ̃2]
>. In contrast to §2, here we do not have to include the boundary traces

vh(L), (vh)x(L): In the finite dimensional case both uh and vh are in H̃2
0 (0, L). In

analogy to §2, the natural norm of zh = zh(t) is defined as

‖zh‖2 :=
1

2

∫ L

0

Λ(uh)
2
xx dx+

1

2

∫ L

0

µv2h dx+
M

2
v2h(L) +

J

2
(vh)

2
x(L)(3.20)

+
k1
2
(uh)

2
x(L) +

k2
2
u2h(L) +

1

2
ζ̃>1 P1ζ̃1 +

1

2
ζ̃>2 P2ζ̃2.

Let ∆t denote the time step and

tn = n∆t, ∀n ∈ {0, 1, . . . , S},

is the discretization of the time interval [0, T ], T = S∆t. For the solution of the
fully discrete scheme at t = tn, we shall use the notation zn = [un vn ζn1 ζn2 ]

>.
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And Un,Vn are the basis representations (in {wj}Nj=1) of un and vn, respectively.
Furthermore, let the vector Cn be defined by:

(Cn)j := c1 · ζn1 (wj)x(L) + c2 · ζn2 wj(L), j = 1, . . . , N.

The Crank-Nicolson scheme for (3.10), (3.9) then reads:

Un+1 − Un

∆t
=

1

2
(Vn+1 + Vn),(3.21)

AVn+1 − AVn

∆t
= −1

2
(KUn+1 +KUn)− 1

2
(BVn+1 + BVn)

−1

2
(Cn+1 + Cn),(3.22)

ζn+1
1 − ζn1

∆t
= A1

ζn+1
1 + ζn1

2
+ b1

vn+1
x (L) + vnx (L)

2
,(3.23)

ζn+1
2 − ζn2

∆t
= A2

ζn+1
2 + ζn2

2
+ b2

vn+1(L) + vn(L)

2
.(3.24)

In the chosen basis {wj}, the last term of (3.23), (3.24) reads
(
V n+1
N + V nN

)
/2 and(

V n+1
N−1 + V nN−1

)
/2, respectively. Next, we show that this scheme dissipates the

norm. The somewhat lengthy proof is deferred to the Appendix B.

Theorem 8. For n ∈ N0 it holds for the norm from (3.20):

‖zn+1‖2 = ‖zn‖2 −∆t

{
δ1

(
un+1
x (L)− unx(L)

∆t

)2

+
1

2

(
q1 ·

ζn+1
1 + ζn1

2
+ δ̃1

un+1
x (L)− unx(L)

∆t

)2

+ δ2

(
un+1(L)− un(L)

∆t

)2

+
1

2

(
q2 ·

ζn+1
2 + ζn2

2
+ δ̃2

un+1(L)− un(L)

∆t

)2

+
ε1
2

(ζn+1
1 + ζn1 )

>

2
P1
ζn+1
1 + ζn1

2
+
ε2
2

(ζn+1
2 + ζn2 )

>

2
P2
ζn+1
2 + ζn2

2

}
.

This decay of the norm is consistent (as ∆t → 0) with the decay (3.1) for the
continuous case, and with Theorem 6. For the uncontrolled beam (i.e. Θ1 = Θ2 =
0), Theorem 8 shows that ‖zn‖ is constant in n. This motivates our choice of the
Crank-Nicolson time discretization.

Remark 3.2. Note that the scheme (3.21)–(3.24) and the norm dissipation prop-
erty from Theorem 8 were written independently of the basis {wj}. Hence, this

decay property applies to any choice of the subspace Wh ⊂ H̃2
0 (0, L). And the

same remark applies to Theorem 6.

3.5. Error estimates: Fully discrete scheme. In this subsection we shall need
to assume additional regularity of the weak solutions u, ζ1 and ζ2, in order to
estimate the error of the fully discrete case: Suppose that u ∈ H4(0, T ; H̃2

0 (0, L))
and ζ1, ζ2 ∈ H3(0, T ;Rn). Let us define ŭ ∈ Wh to be the projection of the weak
solution u, such that

a(ŭ(t), wh) = a(u(t), wh), ∀wh ∈Wh,
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∀t ∈ [0, T ]. One easily verifies that it holds: ŭ ∈ H4(0, T ; H̃2
0 (0, L)), since the

projection u 7→ ŭ is bounded in H̃2
0 (0, L). Furthermore, let ue := u − ŭ denote

the error of the projection. Assuming u ∈ H2(0, T ; H̃4
0 (0, L)), we obtain the error

estimates for ŭ (cf. [45]):

(3.25)
‖ue‖H2(0,L) ≤ Ch2‖u‖H4(0,L),
‖uet‖H2(0,L) ≤ Ch2‖ut‖H4(0,L),
‖uett‖H2(0,L) ≤ Ch2‖utt‖H4(0,L).

Let z(tn) = [u(tn) v(tn) ζ1(tn) ζ2(tn)]
> and zn = [un vn ζn1 ζn2 ]

> denote the
solution of the system and the solution of the fully discrete scheme at time t = tn,
respectively. Then we define the error by

εn := un − ŭ(tn),

Φn := vn − ŭt(tn),

ζne,i := ζni − ζi(tn), i = 1, 2,

and zne := [εn Φn ζne,1 ζ
n
e,2]

>, for every n ∈ 0, 1, . . . , S.
We now give the second order error estimate (both in space and time) of the

fully discrete scheme. The proof is deferred to Appendix B.

Theorem 9. Assuming u ∈ H2(0, T ; H̃4
0 (0, L)) ∩ H4(0, T ; H̃2

0 (0, L)) and ζ1, ζ2 ∈
H3(0, T ;Rn), the following estimate holds:

‖zn − z(tn)‖ ≤ C
[
‖z0e‖+ h2‖u‖H2(0,T ;H4(0,L)) + (∆t)2

(
‖utt‖L2(0,T ;H4(0,L))

+ ‖utt‖H2(0,T ;H2(0,L)) + ‖(ζ1)tt‖H1(0,T ;Rn) + ‖(ζ2)tt‖H1(0,T ;Rn)

)]
.

4. Numerical Simulation

In this chapter we verify the dissipativity of our numerical scheme for an example
with the following coefficients: µ = Λ = L = 1, M = J = 0.1, k1 = k2 = 0.01,
and d1 = d2 = 0.02. We take n = 10 as the dimension of controller variables.
Thereby, A1 = A2 = −I ∈ R10×10, where I is the identity matrix, and b1 = b2 =
c1 = c2 = [1 1 . . . 1]> ∈ R10. We take the time step ∆t = 0.01 and the spatial
discretization step h = 0.01. Figure 2 shows the damped oscillations of the beam
and its convergence to the steady state u ≡ 0 on the time interval [0, 50]. Figure 3
illustrates the (slower then exponential) energy dissipation of the coupled control
system.

Finally, we perform simulations for different time and space discretization steps
to verify the order of convergence (o.o.c.) proved in §3. In Table 1 we list the l2-
error norms of ze. In the left table we see the o.o.c. results for fixed ∆t = 0.01 and
varying space discretization step h on the time interval [0, 1]. In the right table the
o.o.c. results for different ∆t but h = 1/50 fixed, on the time interval [0, 0.00041],
are presented.

5. Appendix A

The following proof is an adaption of the proof of Theorem 8.1 in [33], for the
system studied here. It is included for the sake of completeness.

Proof of Theorem 4. (a)–existence: Let {ŵk}∞k=1 be a sequence of functions that
is an orthonormal basis for H, and an orthogonal basis for V . We introduceWm :=



20 M. MILETIC AND A. ARNOLD

0
10

20
30

40
50

0

0.5

1

−0.2

−0.1

0

0.1

tx

u(t,x)

Figure 2. Damped vibration of the beam: deflection u(t, x)
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Figure 3. Dissipativity of the norm (or “energy”): ‖z(t)‖H
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Table 1. Experimental convergence rates

∆t h ‖ze‖l2 o.o.c.

10−2 1
4 1.75 ∗ 10−2 −−

10−2 1
8 5.5 ∗ 10−3 1.67

10−2 1
16 7.92 ∗ 10−4 2.80

10−2 1
32 1.39 ∗ 10−4 2.51

10−2 1
64 3.38 ∗ 10−5 2.04

10−2 1
128 8.24 ∗ 10−6 2.04

∆t h ‖ze‖l2 o.o.c.

6.4 ∗ 10−6 1
50 2.58 ∗ 10−6 −−

3.2 ∗ 10−6 1
50 6.87 ∗ 10−7 1.91

1.6 ∗ 10−6 1
50 1.73 ∗ 10−7 1.99

8 ∗ 10−7 1
50 4.27 ∗ 10−8 2.02

4 ∗ 10−7 1
50 1.02 ∗ 10−8 2.07

2 ∗ 10−7 1
50 2.03 ∗ 10−9 2.32

span{ŵ1, . . . , ŵm},∀m ∈ N. Furthermore, let sequences ûm0, v̂m0 ∈ Wm be given
so that

ûm0 → û0 in V,

v̂m0 → v̂0 in H.
(5.1)

For a fixed m ∈ N we consider the Galerkin approximation

ûm(t) = ((um)x(L), um(L), um) =

m∑
k=1

dkm(t)ŵk,

with dkm(t) ∈ R, which solves the formulation (3.3) for all ŵ ∈Wm:

(5.2) ((ûm)tt, ŵ)H + a(ûm, ŵ) + b((ûm)t, ŵ) + e1(ζ1,m, ŵ) + e2(ζ2,m, ŵ) = 0,

and ζ1,m, ζ2,m solve the ODE system

(ζ1,m)t(t) = A1ζ1,m(t) + b1
1(ûm)t(t),

(ζ2,m)t(t) = A2ζ2,m(t) + b2
2(ûm)t(t),

(5.3)

with the initial conditions

ûm(0) = ûm0,

(ûm)t(0) = v̂m0,

ζ1,m(0) = ζ0,1,

ζ2,m(0) = ζ0,2.

This problem is a linear system of second order differential equations, with a
unique solution satisfying ûm ∈ C2([0, T ];V ) and ζ1,m, ζ2,m ∈ C1([0, T ];Rn). Next,
we define an energy functional, analogous to (3.11), for the trajectory (û, ζ1, ζ2):

Ê(t; û, ζ1, ζ2) :=
1

2
‖û(t)‖2V +

k1
2
(1û(t))2 +

k2
2
(2û(t))2 +

1

2
‖ût(t)‖2H

+
1

2
ζ>1 (t)P1ζ1(t) +

1

2
ζ>2 (t)P2ζ2(t)

= ‖(u, ut, ζ1, ζ2, Jutx(J),Mut(L))‖H.
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Taking ŵ = (ûm)t in (5.2) and using the smoothness of ûm, ζ1,m, ζ2,m, a straight-
forward calculation yields

d

dt
Ê(t; ûm, ζ1,m, ζ2,m) = −δ1(1(ûm)t)

2 − 1

2

(
ζ1,m · q1 + δ̃1(

1(ûm)t)
)2

−δ2(2(ûm)t)
2 − 1

2

(
ζ2,m · q2 + δ̃2(

2(ûm)t)
)2

−ε1
2
(ζ1,m)>P1ζ1,m − ε2

2
(ζ2,m)>P2ζ2,m

=: F (t; ûm, ζ1,m, ζ2,m) ≤ 0,(5.4)

which is analogous to (3.1) for the continuous solution. Hence

Ê(t; ûm, ζ1,m, ζ2,m) ≤ Ê(0; ûm, ζ0,1, ζ0,2), t ≥ 0,

which implies

{ûm}m∈N is bounded in C([0, T ];V ),

{(ûm)t}m∈N is bounded in C([0, T ];H),(5.5)

{ζ1,m}m∈N, {ζ2,m}m∈N are bounded in C([0, T ];Rn).

Due to these boundedness results, it holds ∀ŵ ∈ V :

|a(ûm(t), ŵ) + b((ûm)t(t), ŵ) + e1(ζ1,m(t), ŵ) + e2(ζ2,m(t), ŵ)| ≤ D1‖ŵ‖V ,

a.e. on (0, T ), with some constant D1 > 0 which does not depend on m. Now, let
m ∈ N be fixed. Furthermore, let ŵ ∈ V , and ŵ = ŵ1 + ŵ2, such that ŵ1 ∈ Wm

and ŵ2 orthogonal to Wm in H. Then we obtain from (5.2):

((ûm)tt, ŵ)H = ((ûm)tt, ŵ1)H

= −a(ûm, ŵ1)− b((ûm)t, ŵ1)− e1(ζ1,m, ŵ1)− e2(ζ2,m, ŵ1)

≤ D1‖ŵ1‖V ≤ D1‖ŵ‖V .

This implies that also (ûm)tt is bounded in L2(0, T ;V ′). Furthermore, from (5.3) it
trivially follows that {(ζ1,m)t}m∈N and ({ζ2,m)t}m∈N are also bounded in L2(0, T ;Rn).

According to the Eberlein-S̆muljan Theorem, there exist subsequences {ûml
}l∈N,

{ζ1,ml
}l∈N, {ζ2,ml

}l∈N, and û ∈ L2(0, T ;V ), with ût ∈ L2(0, T ;H), ûtt ∈ L2(0, T ;V ′),
and ζ1, ζ2 ∈ H1(0, T ;Rn) such that

{ûml
}⇀ u in L2(0, T ;V ),

{(ûml
)t}⇀ ut in L

2(0, T ;H),

{(ûml
)tt}⇀ utt in L

2(0, T ;V ′),

{ζ1,ml
}⇀ ζ1 in L2(0, T ;Rn),(5.6)

{ζ2,ml
}⇀ ζ2 in L2(0, T ;Rn),

{(ζ1,ml
)t}⇀ (ζ1)t in L

2(0, T ;Rn),
{(ζ2,ml

)t}⇀ (ζ2)t in L
2(0, T ;Rn).

Therefore, passing to the limit in (5.2) and (5.3), we see that û and ζ1, ζ2 solve
(3.4) and (3.5).
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(b)–additional regularity: From ζ1, ζ2 ∈ H1(0, T ;Rn) follows the continuity of
the controller functions, i.e. (3.7b). It is easily seen from the construction of the
weak solution and (5.5) that û satisfies (3.7a). (3.7c) follows immediately due to
Lemma 3.1, after, possibly, a modification on a set of measure zero. (3.7d) follows
from Lemma 3.1 and the ’Duality Theorem’ (see [33], Chapter 6.2, pp. 29) which
states: for all θ ∈ (0, 1), it holds

[X,Y ]′θ = [Y ′, X ′]1−θ.

(a)-initial conditions, uniqueness: It remains to show that û, ζ1, and ζ2 satisfy
the initial conditions. For this purpose, we integrate by parts (in time) in (3.4),
with ŵ ∈ C2([0, T ];V ) such that ŵ(T ) = 0 and ŵt(T ) = 0:∫ T

0

[(û, ŵtt)H + a(û, ŵ) + b(ût, ŵ) + e1(ζ1, ŵ) + e2(ζ2, ŵ)] dτ =

−(û(0), ŵt(0))H + V ′ < ût(0), ŵ(0) >V .

(5.7)

Similarly, for a fixed m it follows from (5.2):∫ T

0

[(ûm, ŵtt)H + a(ûm, ŵ) + b((ûm)t, ŵ) + e1(ζ1m, ŵ) + e2(ζ2m, ŵ)] dτ =

−(ûm0, ŵt(0))H + (v̂m0, ŵ(0))H .

(5.8)

Due to (5.1) and (5.6), passing to the limit in (5.8) along the convergent subsequence
{ûml

} gives∫ T

0

[(û, ŵtt)H + a(û, ŵ) + b(ût, ŵ) + e1(ζ1, ŵ) + e2(ζ2, ŵ)] dτ =

−(û0, ŵt(0))H + (v̂0, ŵ(0))H .

(5.9)

Comparing (5.7) with (5.9), implies û(0) = û0 and ût(0) = v̂0. Analogously we
obtain ζ1(0) = ζ0,1 and ζ2(0) = ζ0,2.

In order to show uniqueness, let (û, ζ1, ζ2) be a solution to (3.4) and (3.5) with
zero initial conditions. Let s ∈ (0, T ) be fixed, and set

Û(t) :=

{ ∫ s
t
û(τ) dτ, t < s,
0, t ≥ s,

and

Zi(t) :=

∫ t

0

ζi(τ) dτ,

for i = 1, 2. Integrating (3.5) over (0, t) yields with (1.7)

1

2

d

dt
(Z>

i PiZi)(t) = −1

2
εiZ

>
i (t)PiZi(t)−

1

2
(qi · Zi(t) + δ̃i(

iû(t)))2

+ (di − δi)(
iû(t))2 + Zi(t) · ci(iû(t)),(5.10)

for 0 ≤ t ≤ T , i = 1, 2. Integrating (3.4) with ŵ = Û over [0, T ], and performing
partial integration in time, yields∫ s

0

(ût(τ), û(τ))H − a(Ût(τ), Û(τ)) + b(û(τ), û(τ)) dτ

+
2∑
i=1

∫ s

0

Zi(τ) · ci(iû(τ)) dτ = 0.(5.11)
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From (5.10) and (5.11) follows∫ s

0

d

dt

(
1

2
‖û(τ)‖2H − 1

2
a(Û(τ), Û(τ)) +

1

2

2∑
i=1

Z>
i (τ)PiZi(τ)

)
dτ

= −
2∑
i=1

∫ s

0

(
δi(

iû(τ))2 +
εi
2
Z>
i (τ)PiZi(τ) +

1

2
(qi · Zi(τ) + δ̃i(

iû)(τ))2
)
dτ.

Therefore,

1

2
‖û(s)‖2H +

1

2
a(Û(0), Û(0)) +

2∑
i=1

1

2
Z>
i (s)PiZi(s) ≤ 0.

The matrices Pj , j = 1, 2 are positive definite, and the bilinear form a(., .) is co-

ercive. Hence û(s) = 0, Û(0) = 0, and Zi(s) = 0. Since s ∈ (0, T ) was arbitrary,
û ≡ 0, ζi ≡ 0, i = 1, 2 follows. �

Before the proof of the continuity in time of the weak solution, a definition and
a lemma will be stated.

Definition 5.1. Let Y be a Banach space. Then

Cw([0, T ];Y ) := {w ∈ L∞(0, T ;Y ) : ∀f ∈ Y ′

t 7→ (f, w(t)) is continuous on [0, T ]}.

denotes the space of weakly continuous functions with values in Y .

The following Lemma was stated and proven in [33] (Chapter 8.4, pp. 275).

Lemma 5.2. Let X, Y be Banach spaces, X ⊂ Y with continuous injection, X
reflexive. Then

L∞(0, T ;X) ∩ Cw(0, T ;Y ) = Cw(0, T ;X).

Proof of Theorem 5 . This proof is an adaption of standard strategies to the
situation at hand (cf. §8.4 in [33] and §2.4 in [46]). Using Lemma 5.2 with X = V ,
Y = H, we conclude from (3.7a), (3.7c) that û ∈ Cw([0, T ];V ). Similarly, (3.7a)
and (3.7d) imply ût ∈ Cw([0, T ];H).

Next, we take the scalar cut-off function OI ∈ C∞(R) such that it equals one on
some interval I ⊂⊂ [0, T ], and zero on R \ [0, T ]. Then the functions OI û : R → V
and OIζ1, OIζ2 : R → Rn are compactly supported. Let ηε : R → R be a standard
mollifier in time. Then we define

ûε := ηε ∗OI û ∈ C∞
c (R, V ),

ζε1 := ηε ∗OIζ1 ∈ C∞
c (R,Rn),

ζε2 := ηε ∗OIζ2 ∈ C∞
c (R,Rn).

Now ζε1 and ζε2 converge uniformly on I to ζ1 and ζ2, respectively. Moreover, ûε

converges to û in V , and ûεt to ût in H a.e. on I. Then, Ê(t; ûε, ζε1, ζ
ε
2) converges

to Ê(t; û, ζ1, ζ2) a.e. on I as well. Since ûε, ζε1, ζ
ε
2 are smooth, a straightforward

calculation on I yields

d

dt
Ê(t; ûε, ζε1, ζ

ε
2) = F (t; ûε, ζε1, ζ

ε
2),(5.12)
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with F defined in (5.4). Passing to the limit in (5.12) as ε→ 0

d

dt
Ê(t; û, ζ1, ζ2) = F (t; û, ζ1, ζ2)(5.13)

holds in the sense of distributions on I. Since I was arbitrary, (5.13) holds on

all compact subintervals of (0, T ). Now t 7→ Ê(t; û, ζ1, ζ2) is an integral of an L1-
function (note that the input functions of F satisfy: 1ût,

2 ût ∈ L2(0, T )), so it is
absolutely continuous.

For a fixed t, let limn→+∞ tn = t and let the sequence χn be defined by

χn :=
1

2
‖û(t)− û(tn)‖2V +

1

2
‖ût(t)− ût(tn)‖2H

+
k1
2
(1û(t)− 1û(tn))

2 +
k2
2
(2û(t)− 2û(tn))

2

+
1

2
(ζ1(t)− ζ1(tn))

>P1(ζ1(t)− ζ1(tn))

+
1

2
(ζ2(t)− ζ2(tn))

>P2(ζ2(t)− ζ2(tn)).

Then

χn = Ê(t; û, ζ1, ζ2) + Ê(tn; û, ζ1, ζ2)− (û(t), û(tn))V − (ût(t), ût(tn))H

−k1 1û(t)1û(tn)− k2
2û(t)2û(tn)− ζ1(t)

>P1ζ1(tn)− ζ2(t)
>P2ζ2(tn).

Due to the t-continuity of the energy function, weak continuity of û, ût, and conti-
nuity of ζ1, ζ2, it follows

lim
n→+∞

χn = 0.

Finally, it follows that

lim
n→∞

‖ût(t)− ût(tn)‖2H = 0,

lim
n→∞

‖û(t)− û(tn)‖2V = 0,

which proves the theorem. �

6. Appendix B

Proof of Theorem 8. First we obtain from (3.21) and (3.22) (written in the style
of (3.3)):

un+1 − un

∆t
=
vn+1 + vn

2
,(6.1)

∫ L

0

µ
vn+1 − vn

∆t
wh dx+

∫ L

0

Λ
un+1
xx + unxx

2
(wh)xx dx

+M
vn+1(L)− vn(L)

∆t
wh(L) + J

vn+1
x (L)− vnx (L)

∆t
(wh)x(L)

+k1
un+1
x (L) + unx(L)

2
(wh)x(L) + k2

un+1(L) + un(L)

2
wh(L)(6.2)

+d1
vn+1
x (L) + vnx (L)

2
(wh)x(L) + d2

vn+1(L) + vn(L)

2
wh(L)

+c1 ·
ζn+1
1 + ζn1

2
(wh)x(L) + c2 ·

ζn+1
2 + ζn2

2
wh(L) = 0, ∀wh ∈Wh.
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Next we multiply (6.1) by µ(vn+1 − vn), and integrate over [0, L] to obtain

1

2

∫ L

0

µ
[
(vn+1)2 − (vn)2

]
dx =

∫ L

0

µ
un+1 − un

∆t
(vn+1 − vn) dx,

and wh = un+1 in (6.2):

1

2

∫ L

0

Λ(un+1
xx )2 dx = −1

2

∫ L

0

Λun+1
xx unxx dx−

∫ L

0

µ
vn+1 − vn

∆t
un+1 dx

−M vn+1(L)− vn(L)

∆t
un+1(L)− J

vn+1
x (L)− vnx (L)

∆t
un+1
x (L)

−k1
un+1
x (L) + unx(L)

2
un+1
x (L)− k2

un+1(L) + un(L)

2
un+1(L)

−d1
vn+1
x (L) + vnx (L)

2
un+1
x (L)− d2

vn+1(L) + vn(L)

2
un+1(L)

−c1 ·
ζn+1
1 + ζn1

2
un+1
x (L)− c2 ·

ζn+1
2 + ζn2

2
un+1(L).

We next set wh = un in (6.2):

1

2

∫ L

0

Λ(unxx)
2 dx = −1

2

∫ L

0

Λun+1
xx unxx dx−

∫ L

0

µ
vn+1 − vn

∆t
un dx

−M vn+1(L)− vn(L)

∆t
un(L)− J

vn+1
x (L)− vnx (L)

∆t
unx(L)

−k1
un+1
x (L) + unx(L)

2
unx(L)− k2

un+1(L) + un(L)

2
un(L)

−d1
vn+1
x (L) + vnx (L)

2
unx(L)− d2

vn+1(L) + vn(L)

2
un(L)

−c1 ·
ζn+1
1 + ζn1

2
unx(L)− c2 ·

ζn+1
2 + ζn2

2
un(L).

This yields for the norm of the time-discrete solution, as defined in (3.20):

‖zn+1‖2 − ‖zn‖2

= M

(
−v

n+1(L)− vn(L)

∆t
(un+1(L)− un(L)) +

vn+1(L)2 − vn(L)2

2

)
+ J

(
−v

n+1
x (L)− vnx (L)

∆t
(un+1
x (L)− unx(L)) +

vn+1
x (L)2 − vnx (L)

2

2

)
+

k1
2

(
−
(
un+1
x (L) + unx(L)

)
(un+1
x (L)− unx(L)) + un+1

x (L)2 − unx(L)
2
)

+
k2
2

(
−
(
un+1(L) + un(L)

)
(un+1(L)− un(L)) + un+1(L)2 − un(L)2

)
− d1

2
(vn+1
x (L) + vnx (L))(u

n+1
x (L)− unx(L))

− d2
2
(vn+1(L) + vn(L))(un+1(L)− un(L))

− 1

2
c1 · (ζn+1

1 + ζn1 )(u
n+1
x (L)− unx(L)) +

1

2
(ζn+1

1 )>P1ζ
n+1
1 − 1

2
(ζn1 )

>P1ζ
n
1

− 1

2
c2 · (ζn+1

2 + ζn2 )(u
n+1(L)− un(L)) +

1

2
(ζn+1

2 )>P2ζ
n+1
2 − 1

2
(ζn2 )

>P2ζ
n
2 .
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For the first six lines we use (3.21), and for the rest cj = Pjbj + qj δ̃j (cf. (1.7)) to
obtain:

‖zn+1‖2 = ‖zn‖2 − d1
∆t

(
un+1
x (L)− unx(L)

)2 − d2
∆t

(un+1(L)− un(L))2

−
(
ζn+1
1 + ζn1

)>
2

(P1b1 + q1δ̃1)(u
n+1
x (L)− unx(L))

−
(
ζn+1
2 + ζn2

)>
2

(P2b2 + q2δ̃2)(u
n+1(L)− un(L))

+
1

2
(ζn+1

1 )>P1ζ
n+1
1 − 1

2
(ζn1 )

>P1ζ
n
1 +

1

2
(ζn+1

2 )>P2ζ
n+1
2 − 1

2
(ζn2 )

>P2ζ
n
2 .(6.3)

For the second and the third line of (6.3) we now use (3.21), (3.23), and (3.24) from
the Crank-Nicholson scheme:

‖zn+1‖2 = ‖zn‖2 − d1
∆t

(
un+1
x (L)− unx(L)

)2 − d2
∆t

(un+1(L)− un(L))2

−
(
ζn+1
1 + ζn1

)>
2

P1

(
ζn+1
1 − ζn1 −∆t A1

ζn1 + ζn+1
1

2

)
−

(
ζn+1
1 + ζn1

)
2

· q1δ̃1(un+1
x (L)− unx(L))

−
(
ζn+1
2 + ζn2

)>
2

P2

(
ζn+1
2 − ζn2 −∆t A2

ζn+1
2 + ζn2

2

)
−

(
ζn+1
2 + ζn2

)
2

· q2δ̃2(un+1(L)− un(L))

+
1

2
(ζn+1

1 )>P1ζ
n+1
1 − 1

2
(ζn1 )

>P1ζ
n
1 +

1

2
(ζn+1

2 )>P2ζ
n+1
2 − 1

2
(ζn2 )

>P2ζ
n
2 .

Since Pj , j = 1, 2 are symmetric matrices, this yields

‖zn+1‖2 = ‖zn‖2 − d1
∆t

(
un+1
x (L)− unx(L)

)2 − d2
∆t

(un+1(L)− un(L))2

+ ∆t

(
ζn+1
1 + ζn1

)>
2

P1A1
ζn1 + ζn+1

1

2

−
(
ζn+1
1 + ζn1

)
2

· q1δ̃1(un+1
x (L)− unx(L))

+ ∆t

(
ζn+1
2 + ζn2

)>
2

P2A2
ζn+1
2 + ζn2

2

−
(
ζn+1
2 + ζn2

)
2

· q2δ̃2(un+1(L)− un(L)),

which is the claimed result (by using (1.7)). �

Proof of Theorem 9. Let k ∈ {0, 1, . . . , S} be arbitrary. Taylor’s Theorem yields
∀x ∈ [0, L]:

ŭ(tk+1, x)− ŭ(tk, x)

∆t
=

ŭt(tk+1, x) + ŭt(tk, x)

2
+ ∆t T k1 (x),(6.4)
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where

T k1 (x) =

∫ tk+1

t
k+1

2

ŭttt(t, x)

2 (∆t)
2 (tk+1 − t)2 dt+

∫ t
k+1

2

tk

ŭttt(t, x)

2 (∆t)
2 (tk − t)2 dt

−
∫ tk+1

t
k+1

2

ŭttt(t, x)

2∆t
(tk+1 − t) dt+

∫ t
k+1

2

tk

ŭttt(t, x)

2∆t
(tk − t) dt.

From (6.4), we obtain

εk+1 − εk

∆t
+∆t T k1 =

Φk+1 +Φk

2
.(6.5)

Multiplying (6.5) by µ(Φk+1 − Φk) and integrating over [0, L] yields:

∫ L

0

µ
εk+1 − εk

∆t

(
Φk+1 − Φk

)
dx

=
1

2

∫ L

0

µ
(
Φk+1

)2
dx− 1

2

∫ L

0

µ
(
Φk
)2
dx−∆t

∫ L

0

µT k1
(
Φk+1 − Φk

)
dx.(6.6)

Furthermore, from (3.3) with t = tk+ 1
2

and Taylor’s Theorem, we get ∀w ∈
H̃2

0 (0, L):

∫ L

0

µ
ut(tk+1, x)− ut(tk, x)

∆t
w dx+

∫ L

0

Λ
uxx(tk+1, x) + uxx(tk, x)

2
wxx dx

+M
ut(tk+1, L)− ut(tk, L)

∆t
w(L) + J

utx(tk+1, L)− utx(tk, L)

∆t
wx(L)

+ k1
ux(tk+1, L) + ux(tk, L)

2
wx(L) + k2

u(tk+1, L) + u(tk, L)

2
w(L)

+ d1
utx(tk+1, L) + utx(tk, L)

2
wx(L) + d2

ut(tk+1, L) + ut(tk, L)

2
w(L)

+ c1 ·
ζ1(tk+1) + ζ1(tk)

2
wx(L) + c2 ·

ζ2(tk+1) + ζ2(tk)

2
w(L) = ∆t T k2 (w),

(6.7)



BEAM STABILITY AND SIMULATION 29

with the functional T k2 : H̃2
0 (0, L) → R defined as

T k2 (w) =∫ L

0

µ

∫ tk+1

t
k+1

2

utttt(t, x)

2(∆t)2
(tk+1 − t)

2
dt+

∫ t
k+1

2

tk

utttt(t, x)

2(∆t)2
(tk − t)

2
dt

w dx

+

∫ L

0

Λ

∫ tk+1

t
k+1

2

uttxx(t, x)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

uttxx(t, x)

2∆t
(tk − t) dt

wxx dx

+M

∫ tk+1

t
k+1

2

utttt(t, L)

2(∆t)2
(tk+1 − t)

2
dt+

∫ t
k+1

2

tk

utttt(t, L)

2(∆t)2
(tk − t)

2
dt

w(L)

+ J

∫ tk+1

t
k+1

2

uttttx(t, L)

2(∆t)2
(tk+1 − t)

2
dt+

∫ t
k+1

2

tk

uttttx(t, L)

2(∆t)2
(tk − t)

2
dt

wx(L)

+ k1

∫ tk+1

t
k+1

2

uttx(t, L)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

uttx(t, L)

2∆t
(tk − t) dt

wx(L)

+ k2

∫ tk+1

t
k+1

2

utt(t, L)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

utt(t, L)

2∆t
(tk − t) dt

w(L)

+ d1

∫ tk+1

t
k+1

2

utttx(t, L)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

utttx(t, L)

2∆t
(tk − t) dt

wx(L)

+ d2

∫ tk+1

t
k+1

2

uttt(t, L)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

uttt(t, L)

2∆t
(tk − t) dt

w(L)

+ c1 ·

∫ tk+1

t
k+1

2

(ζ1)tt(t)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

(ζ1)tt(t)

2∆t
(tk − t) dt

wx(L)

+ c2 ·

∫ tk+1

t
k+1

2

(ζ2)tt(t)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

(ζ2)tt(t)

2∆t
(tk − t) dt

w(L).

(6.8)

Now, from (3.22) and (6.7) follows ∀wh ∈Wh:

(6.9)

∫ L
0
µΦk+1−Φk

∆t wh dx+
∫ L
0
Λ
εk+1
xx +εkxx

2 (wh)xx dx

+M Φk+1(L)−Φk(L)
∆t (wh)(L) + J

Φk+1
x (L)−Φk

x(L)
∆t (wh)x(L)

+k1
εk+1
x (L)+εkx(L)

2 (wh)x(L) + k2
εk+1(L)+εk(L)

2 wh(L)

+d1
Φk+1

x (L)+Φk
x(L)

2 (wh)x(L) + d2
Φk+1(L)+Φk(L)

2 wh(L)

+c1 ·
ζk+1
e,1 +ζke,1

2 (wh)x(L) + c2 ·
ζk+1
e,2 +ζke,2

2 wh(L)
= −∆t T k2 (wh) +Gk1(wh),
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where the functional Gk1(wh) is given by

(6.10)

Gk1(wh) :=
∫ L
0
µ
ue
t (tk+1,x)−ue

t (tk,x)
∆t wh dx

+M
ue
t (tk+1,L)−ue

t (tk,L)
∆t wh(L) + J

ue
tx(tk+1,L)−ue

tx(tk,L)
∆t (wh)x(L)

+d1
ue
tx(tk+1,L)+u

e
tx(tk,L)

2 (wh)x(L) + d2
ue
t (tk+1,L)+u

e
t (tk,L)

2 wh(L).

A Taylor expansion of ζj about tk+ 1
2
yields with (3.5):

(6.11)
ζ1(tk+1)−ζ1(tk)

∆t −A1
ζ1(tk+1)+ζ1(tk)

2 − b1
utx(tk+1,L)+utx(tk,L)

2 = ∆t T k3 ,
ζ2(tk+1)−ζ2(tk)

∆t −A2
ζ2(tk+1)+ζ2(tk)

2 − b2
ut(tk+1,L)+ut(tk,L)

2 = ∆t T k4 ,

with

T k3 =

∫ tk+1

t
k+1

2

(ζ1)ttt(t)

2(∆t)2
(tk+1 − t)

2
dt+

∫ t
k+1

2

tk

(ζ1)ttt(t)

2(∆t)2
(tk − t)

2
dt

−A1

∫ tk+1

t
k+1

2

(ζ1)tt(t)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

(ζ1)tt(t)

2∆t
(tk − t) dt


−b1

∫ tk+1

t
k+1

2

utttx(t, L)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

utttx(t, L)

2∆t
(tk − t) dt

 ,

T k4 =

∫ tk+1

t
k+1

2

(ζ2)ttt(t)

2(∆t)2
(tk+1 − t)

2
dt+

∫ t
k+1

2

tk

(ζ2)ttt(t)

2(∆t)2
(tk − t)

2
dt

−A2

∫ tk+1

t
k+1

2

(ζ2)tt(t)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

(ζ2)tt(t)

2∆t
(tk − t) dt


−b2

∫ tk+1

t
k+1

2

uttt(t, L)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

uttt(t, L)

2∆t
(tk − t) dt

 .

Using (3.23), (3.24), and (6.11), we get

(6.12)
ζk+1
e,1 −ζke,1

∆t −A1
ζk+1
e,1 +ζke,1

2 − b1
Φk+1

x (L)+Φk
x(L)

2 = −∆t T k3 −Gk2 ,
ζk+1
e,2 −ζke,2

∆t −A2
ζk+1
e,2 +ζke,2

2 − b2
Φk+1(L)+Φk(L)

2 = −∆t T k4 −Gk3 ,

with

Gk2 = b1
uetx(tk+1, L) + uetx(tk, L)

2
,

Gk3 = b2
uet (tk+1, L) + uet (tk, L)

2
.
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In (6.9) we now take wh := ∆tΦ
k+1+Φk

2 ∈Wh, due to (6.5). Using (6.6) and (6.12),
yields:

‖zk+1
e ‖2 − ‖zke ‖2 = −(∆t)2

1

2

∫ L

0

Λ
(
εk+1
xx + εkxx

)
(T k1 )xx dx+

∆t

2
Gk1(Φ

k+1 +Φk)

− (∆t)2
(
k1
εk+1
x (L) + εkx(L)

2
(T k1 )x(L) + k2

εk+1(L) + εk(L)

2
T k1 (L)

)

− ∆t

2

(
q1
ζk+1
e,1 + ζke,1

2
+ δ̃1

Φk+1
x (L) + Φkx(L)

2

)2

− ∆tδ1

(
Φk+1
x (L) + Φkx(L)

2

)2

−∆t
ε1
2

ζk+1
e,1 + ζke,1

2
· P1

ζk+1
e,1 + ζke,1

2

− P1

ζk+1
e,1 + ζke,1

2
·
(
(∆t)2T k3 +∆tGk2

)
− ∆t

2

(
q2
ζk+1
e,2 + ζke,2

2
+ δ̃2

Φk+1(L) + Φk(L)

2

)2

− ∆tδ2

(
Φk+1(L) + Φk(L)

2

)2

−∆t
ε2
2

ζk+1
e,2 + ζke,2

2
· P2

ζk+1
e,2 + ζke,2

2

− P2

ζk+1
e,2 + ζke,2

2
·
(
(∆t)2T k4 +∆tGk3

)
− 1

2
(∆t)2T k2 (Φ

k+1 +Φk).

Therefore,

‖zk+1
e ‖2 − ‖zke ‖2 ≤ −(∆t)2

1

2

∫ L

0

Λ
(
εk+1
xx + εkxx

)
(T k1 )xx dx+

∆t

2
Gk1(Φ

k+1 +Φk)

− (∆t)2
(
k1
εk+1
x (L) + εkx(L)

2
(T k1 )x(L) + k2

εk+1(L) + εk(L)

2
T k1 (L)

)
− P1

ζk+1
e,1 + ζke,1

2
·
(
(∆t)2T k3 +∆tGk2

)
− P2

ζk+1
e,2 + ζke,2

2
·
(
(∆t)2T k4 +∆tGk3

)
− 1

2
(∆t)2T k2 (Φ

k+1 +Φk).(6.13)

Next, from (6.10) follows:

|Gk1(Φk+1 +Φk)| ≤ C

(
‖u

e
t (tk+1, x)− uet (tk, x)

∆t
‖2L2 + ‖Φk+1 +Φk‖2L2

+ |u
e
t (tk+1, L)− uet (tk, L)

∆t
|2 + |u

e
tx(tk+1, L)− uetx(tk, L)

∆t
|2

+ |u
e
tx(tk+1, L) + uetx(tk, L)

2
|2 + |u

e
t (tk+1, L) + uet (tk, L)

2
|2(6.14)

+ |Φk+1(L) + Φk(L)|2 + |Φk+1
x (L) + Φkx(L)|2

)
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≤ C
(
‖Φk+1 +Φk‖2L2 + |Φk+1(L) + Φk(L)|2 + |Φk+1

x (L) + Φkx(L)|2

+
1

∆t

∫ tk+1

tk

‖uett(t)‖2L2 + |uett(t, L)|2 + |uettx(t, L)|2 dt+ ‖uet‖2C([tk,tk+1];H2) ) .

(6.15)

It can easily be seen that

(6.16) ‖T k1 ‖2H2 ≤ ∆t

∫ tk+1

tk

‖ŭttt(t)‖2H2 dt ≤ C∆t

∫ tk+1

tk

‖uttt(t)‖2H2 dt,

(6.17) ‖T k3 ‖2 ≤ C∆t

∫ tk+1

tk

‖uttt(t)‖2H2 + ‖(ζ1)tt‖2 + ‖(ζ1)ttt‖2 dt,

(6.18) ‖T k4 ‖2 ≤ C∆t

∫ tk+1

tk

‖uttt(t)‖2H1 + ‖(ζ2)tt‖2 + ‖(ζ2)ttt‖2 dt,

and

T k2 (Φ
k) ≤ C

(
‖Φk‖2L2 + |Φk(L)|2 + |Φkx(L)|2 +

+ ∆t

∫ tk+1

tk

‖utt(t)‖2H4 + ‖uttt(t)‖2H2 + ‖utttt(t)‖2H2 dt

+ ∆t

∫ tk+1

tk

‖(ζ1)tt(t)‖2 + ‖(ζ2)tt(t)‖2 dt
)
.(6.19)

For the above estimate, we rewrote the second term of T k2 (Φ
k) in (6.8) as:∫ L

0

∫ tk+1

t
k+1

2

uttxx(t, x)

2∆t
(tk+1 − t) dt−

∫ t
k+1

2

tk

uttxx(t, x)

2∆t
(tk − t) dt

Φkxx dx

=

∫ tk+1

t
k+1

2

tk+1 − t

2∆t

(
uttxx(t, L)Φ

k
x(L)− uttxxx(t, L)Φ

k(L) +

∫ L

0

uttxxxx(t, x)Φ
k dx

)
dt

−
∫ t

k+1
2

tk

tk − t

2∆t

(
uttxx(t, L)Φ

k
x(L)− uttxxx(t, L)Φ

k(L) +

∫ L

0

uttxxxx(t, x)Φ
k dx

)
dt,

using Φk(0) = Φkx(0) = 0, and then the Sobolev embedding Theorem. From (6.13)
– (6.19), now follows:

‖zk+1
e ‖2 − ‖zke ‖2 ≤ C

(
∆t(‖zk+1

e ‖2 + ‖zke ‖2) + ∆t‖uet‖2C([tk,tk+1];H2)

+

∫ tk+1

tk

‖uett(t)‖2L2 + |uett(t, L)|2 + |uettx(t, L)|2 dt

+ (∆t)4
2∑
i=1

∫ tk+1

tk

‖(ζi)tt‖2 + ‖(ζi)ttt‖2 dt

+ (∆t)4
∫ tk+1

tk

‖utt(t)‖2H4 + ‖uttt(t)‖2H2 + ‖utttt(t)‖2H2 dt

)
.(6.20)
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Let now n ∈ {1, . . . , S}. Assuming ∆t ≤ 1
2C (with C from (6.20)), and summing

(6.20) over k ∈ {0, . . . , n}, gives:

1

2
‖zn+1
e ‖2 ≤ 3

2
‖z0e‖2 + C

(
∆t

n∑
k=1

‖zke ‖2 + ‖uet‖2C([0,T ];H2)+ ‖uett‖2L2(0,T ;H2)

+ (∆t)4

[
2∑
i=1

‖(ζi)tt(t)‖2L2(0,T ;Rn) + ‖(ζi)ttt(t)‖2L2(0,T ;Rn)

+ ‖utt(t)‖2L2(0,T ;H4) + ‖uttt(t)‖2L2(0,T ;H2) + ‖utttt(t)‖2L2(0,T ;H2)

])
.(6.21)

Finally, using the discrete-in-time Gronwall inequality and (6.4), we obtain:

‖zn+1
e ‖2 ≤ C

(
‖z0e‖2 + h4

(
‖ut‖2C([0,T ];H4) + ‖utt‖2L2(0,T ;H4)

)
+ (∆t)4

[
2∑
i=1

‖(ζi)tt(t)‖2L2(0,T ;Rn) + ‖(ζi)ttt(t)‖2L2(0,T ;Rn)

+ ‖utt(t)‖2L2(0,T ;H4) + ‖uttt(t)‖2L2(0,T ;H2) + ‖utttt(t)‖2L2(0,T ;H2)

])
.(6.22)

The result now follows from (6.22), (3.25), and the triangle inequality. �
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Birkhäuser, Basel, pp. 275–292, (2003).
[26] S.G. Krantz. Handbook of Complex Variables. Birkhäuser, Boston, pp. 74, (1999).
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