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On the stationary Schrödinger equation in the semi-classical limit:
Asymptotic blow-up at a turning point

Kirian Döpfner1∗ and Anton Arnold1,∗∗
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We consider a model for the wave function of an electron, injected at a fixed energyE into an electronic device with stationary
potential V (x). This wave function is the solution of the stationary 1D Schrödinger equation. The scattering problem is
modeled on an interval where the potential varies. Moreover, V (x) is assumed constant in the exterior, i.e. in the leads of
the device. Here we are interested in including turning points – points x̄ where the potential and the energy of the particle
coincide, i.e. E = V (x̄). We show that including a turning point lets the wave function blow-up asymptotically as the scaled
Planck constant ε→ 0. This is an essential difference to the uniformly bounded wave function if turning points are excluded.
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1 Model

We consider a scattering problem for the stationary Schrödinger equation in 1D, which is a relevant quantum dynamical model
for the electron transport in a diode. The diode covers the interval [x0, 1], having leads to both sides. Electrons are injected
from the right lead in the form of a plane wave (of unit amplitude, e.g.).
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Fig. 1 Sketch of the model with linear poten-
tial in the vicinity of the turning point at x = 0,
and constant continuation of the potential in the
leads, i.e. outside [x0, 1]. Electrons are injected
at energy E from the right boundary at x = 1.

The scattering problem formulation for the wave function ψ(x), with a(x) := E − V (x), and the scaled Planck constant
ε := ~√

2m
reads:

ε2ψ′′(x) + a(x)ψ(x) = 0 , x ∈ (x0, 1) ,

εψ′(x0)−
√
−x0ψ(x0) = 0 ,

εψ′(1)− i
√
a(1)ψ(1) = −2i

√
a(1) ,

(1)

where 0 < ε � 1, x0 < 0 < x1 < 1, a(x) = x on [x0, x1], and a(x) ≥ τ1 on [x1, 1] for some τ1 > 0. The two transparent
boundary conditions correspond to constant potentials in the exterior problems, i.e. for x ≤ x0 and x ≥ 1. The model includes
a first order turning point (i.e. a zero of a(x)) at x = 0.

The goal of this note is to describe the asymptotic behavior of ψε in the semi-classical limit – in particular close to the
turning point. This is an important input information for the numerical treatment of (1). In [2] both of these questions were
discussed for a very similar scattering problem, but having a linear potential V (x) := E − x in the whole left lead. Here, we
extend this to the more realistic case of constant potentials in both leads.

Away from the turning point, an efficient numerical treatment of the highly oscillatory problem (1) can be based on first
eliminating analytically the dominant oscillations (using asymptotic WKB-approximations of the solution). Then, the resulting
smoother problem can be solved numerically on a coarse grid [1, 2], with an error that is uniform in ε. Since this approach is
not valid near a turning point, we assumed here and in [2], as a simplification, that the potential is linear in the vicinity of the
turning point. ψε can then be obtained as the numerical solution of (1) on [x1, 1], coupled to the explicit (analytic) solution on
[x0, x1]:

ψε(x) = αε ψ̂ε(x) , ψ̂ε(x) = ε−
1
6

[
Ai (y(x))− Aε

Bε
Bi (y(x))

]
, (2)
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with some normalization constant αε, and y(x) := − x
ε2/3

, where

Aε := Ai′
(
(y(x0)

)
+
√
y(x0)Ai(y(x0)

)
, Bε := Bi′

(
(y(x0)

)
+
√
y(x0) Bi

(
y(x0)

)
.

Here, Ai and Bi are the fundamental solutions to the Airy equation, i.e. Airy functions.

2 Asymptotic blow-up at a turning point

Example 2.1 Consider (1) with x0 = −0.3 and a(x) = x for x ∈ [x0, 1] and 0 < ε < 1. Then the explicit solution is
given by (2) on all of [x0, 1], and the normalization is chosen such that ψε satisfies the right boundary condition:

αε(ψ̂ε(1), ψ̂
′
ε(1)) :=

2
√
a(1)

ψ̂ε(1)
√
a(1)+iεψ̂′

ε(1)
. (3)

Fig. 2: |ψε(x)| (left) and ε|ψ′ε(x)| (right) for various values of ε. This example illustrates that ε‖ψ′ε‖L∞(x0,1) is uniformly bounded w.r.t.
0 < ε < 1, but ‖ψε‖L∞(x0,1) is not since {|ψε(0)|} becomes unbounded as ε→ 0.

In Figure 2, one can see that in the classically forbidden region (i.e. a(x) = x < 0) there is (approximately) exponential
decay of ψε, but in the classically allowed region (i.e. a(x) > 0) the solution is highly oscillatory with varying frequency of
order O(

√
a(x)/ε). The asymptotic blow-up and, resp., boundedness of the solution in Example 2.1 extends to all potentials

covered by the problem from (1):
Proposition 2.2 Let 0 < ε � 1, and x0 < 0 < x1 < 1. Further let a ∈ C2 on [x0, 1] with a(x) = x on [x0, x1], and

a(x) ≥ τ1 > 0 on [x1, 1]. Then, the family of solutions {ψε(x)} to the boundary value problem (1) satisfies:

a) ‖ψε‖L∞(x0,1) is of the (sharp) order ε−
1
6 , i.e. ∃c1, c2 > 0, such that c1 ε−

1
6 ≤ ‖ψε‖L∞(x0,1) ≤ c2 ε−

1
6 for ε→ 0.

b) ε‖ψ′ε‖L∞(x0,1) is uniformly bounded with respect to ε→ 0.

Proof-idea. The blow-up of |ψε(0)| stems essentially from the x−1/4–decay of the flipped Airy functions Ai(−x), Bi(−x)
as x→∞. Moreover, since Aε/Bε

ε→0−→ 0, ψε from (2) behaves like the scaled Airy function ε−1/6 Ai(−xε−2/3) close to the
turning point. This ε–scaling of the x variable compresses the Airy function decay to the (small) interval [0, x1]. At the fixed
point x1, Ai(−x1ε−2/3) is proportional to ε1/6. This decay is compensated by the scaling factor ε−1/6 of ψ̂ε in (2). Since the
resulting ε–uniformity of |ψε(x1)| is not changed any more on the subsequent interval [x1, 1], this allows the solution to be
matched at x = 1 to the incoming plane wave with amplitude 1 (independently of ε).

For the detailed proof see [3]; it is an adaption of the proof for Proposition 4.2 in [2].

With this information at hand, a hybrid analytical-numerical solution scheme for (1) can be formulated as in [2]. Since
the analytical solution (2) is scaled by (3), it inherits an error from the numerical solution on [x1, 1]. For obtaining an overall
error that is uniform in ε, it is crucial that the numerical error on [x1, 1] decays faster than ε1/6 (and this is possible with the
WKB-based method from [1]). This way it can compensate the (inherited) error of the analytical, asymptotically unbounded
solution ψε on [x0, x1]. Let us remark here that the findings of this note are not limited to linear potentials around a turning
point, but they apply with the same orders also to other first order turning points, i.e. zeros of a(x) of first order, cf. [2, 3].
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