Abstract
This paper is dealing with two L2 hypocoercivity methods based on Fourier decomposition and mode-by-mode estimates, with applications to rates of convergence or decay in kinetic equations on the torus and on the whole Euclidean space. The main idea is to perturb the standard L2 norm by a twist obtained either by a nonlocal perturbation build upon diffusive macroscopic dynamics, or by a change of the scalar product based on Lyapunov matrix inequalities. We explore various estimates for equations involving a Fokker–Planck and a linear relaxation operator. We review existing results in simple cases and focus on the accuracy of the estimates of the rates. The two methods are compared in the case of the Goldstein–Taylor model in one-dimension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achleitner, F., Arnold, A., Carlen, E.A.: The hypocoercivity index for the short and large time behavior of ODEs. Preprint arXiv (2021). https://arxiv.org/abs/2109.10784
Achleitner, F., Arnold, A., Carlen, E.A.: On linear hypocoercive BGK models. In: From Particle Systems to Partial Differential Equations III, pp. 1–37. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-32144-8_1
Achleitner, F., Arnold, A., Carlen, E.A.: On multi-dimensional hypocoercive BGK models. Kinet. Relat. Models 11(4), 953–1009 (2018). https://doi.org/10.3934/krm.2018038
Achleitner, F., Arnold, A., Signorello, B.: On optimal decay estimates for ODEs and PDEs with modal decomposition. In: Stochastic Dynamics Out of Equilibrium. Springer Proc. Math. Stat., vol. 282, pp. 241–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15096-9_6
Addala, L., Dolbeault, J., Li, X., Tayeb, M.L.: L 2-hypocoercivity and large time asymptotics of the linearized Vlasov–Poisson–Fokker-Planck system. J. Stat. Phys. 184, 34 (2021). https://doi.org/10.1007/s10955-021-02784-4
Armstrong, S., Mourrat, J.C.: Variational methods for the kinetic Fokker-Planck equation. Preprint arXiv (2019). https://arxiv.org/abs/1409.5425
Arnold, A., Einav, A., Signorello, B., Wöhrer, T.: Large time convergence of the non-homogeneous Goldstein-Taylor equation. J. Stat. Phys. 182, 35 (2021). https://doi.org/10.1007/s10955-021-02702-8
Arnold, A., Einav, A., Wöhrer, T.: On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations. J. Differ. Equ. 264(11), 6843–6872 (2018). https://doi.org/10.1016/j.jde.2018.01.052
Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift. Preprint arXiv (2014). https://arxiv.org/abs/1409.5425
Arnold, A., Jin, S., Wöhrer, T.: Sharp decay estimates in local sensitivity analysis for evolution equations with uncertainties: from ODEs to linear kinetic equations. J. Differ. Equ. 268(3), 1156–1204 (2020). https://doi.org/10.1016/j.jde.2019.08.047
Arnold, A., Schmeiser, C., Signorello, B.: Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift. Preprint arXiv (2020). https://arxiv.org/abs/2003.01405
Bernard, É., Salvarani, F.: Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model. J. Stat. Phys. 153(2), 363–375 (2013). https://doi.org/10.1007/s10955-013-0825-6
Bernard, É., Salvarani, F.: Correction to: Optimal estimate of the spectral gap for the degenerate Goldstein-Taylor model. J. Stat. Phys. 181(4), 1–2 (2020). https://doi.org/10.1007/s10955-020-02631-y
Bouin, E., Dolbeault, J., Lafleche, L., Schmeiser, C.: Hypocoercivity and sub-exponential local equilibria. Monatshefte für Mathematik (2020). https://doi.org/10.1007/s00605-020-01483-8
Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C., Schmeiser, C.: Hypocoercivity without confinement. Pure Appl. Anal. 2(2), 203–232 (2020). https://doi.org/10.2140/paa.2020.2.203
Bouin, E., Dolbeault, J., Schmeiser, C.: Diffusion and kinetic transport with very weak confinement. Kinet. Relat. Models 13(2), 345–371 (2020). https://doi.org/10.3934/krm.2020012
Bouin, E., Dolbeault, J., Schmeiser, C.: A variational proof of Nash’s inequality. Rend. Lincei Mate. Appl. 31(1), 211–223 (2020). https://doi.org/10.4171/rlm/886
Calvez, V., Raoul, G.: Confinement by biased velocity jumps: aggregation of escherichia coli. Kinet. Relat. Models 8, 651 (2015). https://doi.org/10.3934/krm.2015.8.651
Dolbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. eXpress (2012). https://doi.org/10.1093/amrx/abs015
Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. 347(9–10), 511–516 (2009). https://doi.org/10.1016/j.crma.2009.02.025
Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015). https://doi.org/10.1090/s0002-9947-2015-06012-7
Favre, G., Schmeiser, C.: Hypocoercivity and fast reaction limit for linear reaction networks with kinetic transport. J. Stat. Phys. 178(6), 1319–1335 (2020). https://doi.org/10.1007/s10955-020-02503-5
Fellner, K., Prager, W., Tang, B.Q.: The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinet. Relat. Models 10(4), 1055–1087 (2017). https://doi.org/10.3934/krm.2017042
Goudon, T., Alonso, R.J., Vavasseur, A.: Damping of particles interacting with a vibrating medium. Ann. Inst. Henri Poincaré (C) Non Linear Anal. (2016). https://doi.org/10.1016/j.anihpc.2016.12.005
Hérau, F.: Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. 46(3–4), 349–359 (2006). https://content.iospress.com/articles/asymptotic-analysis/asy741
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9780511810817
Kawashima, S.: The Boltzmann equation and thirteen moments. Jpn. J. Appl. Math. 7(2), 301–320 (1990). https://doi.org/10.1007/BF03167846
Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006). https://doi.org/10.1088/0951-7715/19/4/011
Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958). https://doi.org/10.2307/2372841
Neumann, L., Schmeiser, C.: A kinetic reaction model: decay to equilibrium and macroscopic limit. Kinet. Relat. Models 9, 571 (2016). https://doi.org/10.3934/krm.2016007
Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5561-1
Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14(2), 249–275 (1985). https://doi.org/10.14492/hokmj/1381757663
Ueda, Y., Duan, R., Kawashima, S.: Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application. Arch. Ration. Mech. Anal. 205(1), 239–266 (2012). https://doi.org/10.1007/s00205-012-0508-5
Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202(950), iv+ 141 (2009). https://doi.org/10.1090/S0065-9266-09-00567-5
Acknowledgements
This work has been partially supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR) and the Amadeus project Hypocoercivity no. 39453PH. J.D. and C.S. thank E. Bouin, S. Mischler and C. Mouhot for stimulating discussions that took place during the preparation of [15]: some questions raised at this occasion are the origin for this contribution. A.A., C.S., and T.W. were partially supported by the FWF (Austrian Science Fund) funded SFB F65.
Ⓒ 2020 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arnold, A., Dolbeault, J., Schmeiser, C., Wöhrer, T. (2021). Sharpening of Decay Rates in Fourier Based Hypocoercivity Methods. In: Salvarani, F. (eds) Recent Advances in Kinetic Equations and Applications. Springer INdAM Series, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-82946-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-82946-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82945-2
Online ISBN: 978-3-030-82946-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)