Abstract
We consider the Goldstein-Taylor model, which is a 2-velocity BGK model, and construct the “optimal” Lyapunov functional to quantify the convergence to the unique normalized steady state. The Lyapunov functional is optimal in the sense that it yields decay estimates in \(L^2\)-norm with the sharp exponential decay rate and minimal multiplicative constant. The modal decomposition of the Goldstein-Taylor model leads to the study of a family of 2-dimensional ODE systems. Therefore we discuss the characterization of “optimal” Lyapunov functionals for linear ODE systems with positive stable diagonalizable matrices. We give a complete answer for optimal decay rates of 2-dimensional ODE systems, and a partial answer for higher dimensional ODE systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplicity.
References
Achleitner, F., Arnold, A., Carlen, E.A.: On linear hypocoercive BGK models. In: Gonçalves, P., Soares, A. (eds.) From Particle Systems to Partial Differential Equations III. Springer Proceedings in Mathematics & Statistics, vol. 162, pp. 1–37. Springer, Cham (2016)
Achleitner, F., Arnold, A., Carlen, E.A.: On multi-dimensional hypocoercive BGK models. Kinet. Relat. Models 11, 953–1009 (2018)
Achleitner, F., Arnold, A., Stürzer, D.: Large-Time Behavior in Non-Symmetric Fokker-Planck Equations, vol. 6, pp. 1–68 . Riv. Math. Univ. Parma (N.S.) (2015)
Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift. arXiv preprint, arXiv:1409.5425 (2014)
Arnold, A., Jin, S., Wöhrer, T.: Sharp Decay Estimates in Local Sensitivity Analysis for Evolution Equations with Uncertainties: from ODEs to Linear Kinetic Equations. arXiv preprint, arXiv:1904.01190 (2019)
Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge-Mass (1978)
Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)
Blondel, V.D., Megretski, A. (eds.) Unsolved Problems in Mathematical Systems and Control Theory. Princeton University Press, Princeton (2004)
Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Braatz, R.D., Morari, M.: Minimizing the Euclidean condition number. SIAM J. Control Optim. 32, 1763–1768 (1994)
Businger, P.A.: Matrices which can be optimally scaled. Numer. Math. 12, 346–348 (1968)
Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc. 367, 3807–3828 (2015)
Kolotilina, L.Yu.: Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive definite \(3\times 3\) matrices. J. Math. Sci. (N.Y.) 132, 190–213 (2006)
Miclo, L., Monmarché, P.: Étude spectrale minutieuse de processus moins indécis que les autres. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités XLV, Lecture Notes in Mathematics, vol. 2078, pp. 459–481. Springer, Heidelberg (2013). A summary in English is available at https://www.ljll.math.upmc.fr/~monmarche
Sezginer, R.S., Overton, M.L.: The largest singular value of \(e^X A_0 e^{-X}\) is convex on convex sets of commuting matrices. IEEE Trans. Automat. Control 35, 229–230 (1990)
Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202(950), iv+141 (2009)
Acknowledgments
All authors were supported by the FWF-funded SFB #F65. The second author was partially supported by the FWF-doctoral school W1245 “Dissipation and dispersion in nonlinear partial differential equations”. We are grateful to the anonymous referee who led us to better distinguish the different cases studied in §3 and §4.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Achleitner, F., Arnold, A., Signorello, B. (2019). On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-15096-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15095-2
Online ISBN: 978-3-030-15096-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)