Skip to main content

On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

  • 1177 Accesses

Abstract

We consider the Goldstein-Taylor model, which is a 2-velocity BGK model, and construct the “optimal” Lyapunov functional to quantify the convergence to the unique normalized steady state. The Lyapunov functional is optimal in the sense that it yields decay estimates in \(L^2\)-norm with the sharp exponential decay rate and minimal multiplicative constant. The modal decomposition of the Goldstein-Taylor model leads to the study of a family of 2-dimensional ODE systems. Therefore we discuss the characterization of “optimal” Lyapunov functionals for linear ODE systems with positive stable diagonalizable matrices. We give a complete answer for optimal decay rates of 2-dimensional ODE systems, and a partial answer for higher dimensional ODE systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplicity.

References

  1. Achleitner, F., Arnold, A., Carlen, E.A.: On linear hypocoercive BGK models. In: Gonçalves, P., Soares, A. (eds.) From Particle Systems to Partial Differential Equations III. Springer Proceedings in Mathematics & Statistics, vol. 162, pp. 1–37. Springer, Cham (2016)

    Google Scholar 

  2. Achleitner, F., Arnold, A., Carlen, E.A.: On multi-dimensional hypocoercive BGK models. Kinet. Relat. Models 11, 953–1009 (2018)

    Article  MathSciNet  Google Scholar 

  3. Achleitner, F., Arnold, A., Stürzer, D.: Large-Time Behavior in Non-Symmetric Fokker-Planck Equations, vol. 6, pp. 1–68 . Riv. Math. Univ. Parma (N.S.) (2015)

    Google Scholar 

  4. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift. arXiv preprint, arXiv:1409.5425 (2014)

  5. Arnold, A., Jin, S., Wöhrer, T.: Sharp Decay Estimates in Local Sensitivity Analysis for Evolution Equations with Uncertainties: from ODEs to Linear Kinetic Equations. arXiv preprint, arXiv:1904.01190 (2019)

  6. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge-Mass (1978)

    Google Scholar 

  7. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  Google Scholar 

  8. Blondel, V.D., Megretski, A. (eds.) Unsolved Problems in Mathematical Systems and Control Theory. Princeton University Press, Princeton (2004)

    Google Scholar 

  9. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  10. Braatz, R.D., Morari, M.: Minimizing the Euclidean condition number. SIAM J. Control Optim. 32, 1763–1768 (1994)

    Article  MathSciNet  Google Scholar 

  11. Businger, P.A.: Matrices which can be optimally scaled. Numer. Math. 12, 346–348 (1968)

    Article  MathSciNet  Google Scholar 

  12. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc. 367, 3807–3828 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kolotilina, L.Yu.: Solution of the problem of optimal diagonal scaling for quasireal Hermitian positive definite \(3\times 3\) matrices. J. Math. Sci. (N.Y.) 132, 190–213 (2006)

    Google Scholar 

  14. Miclo, L., Monmarché, P.: Étude spectrale minutieuse de processus moins indécis que les autres. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités XLV, Lecture Notes in Mathematics, vol. 2078, pp. 459–481. Springer, Heidelberg (2013). A summary in English is available at https://www.ljll.math.upmc.fr/~monmarche

  15. Sezginer, R.S., Overton, M.L.: The largest singular value of \(e^X A_0 e^{-X}\) is convex on convex sets of commuting matrices. IEEE Trans. Automat. Control 35, 229–230 (1990)

    Google Scholar 

  16. Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202(950), iv+141 (2009)

    Google Scholar 

Download references

Acknowledgments

All authors were supported by the FWF-funded SFB #F65. The second author was partially supported by the FWF-doctoral school W1245 “Dissipation and dispersion in nonlinear partial differential equations”. We are grateful to the anonymous referee who led us to better distinguish the different cases studied in §3 and §4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Achleitner, F., Arnold, A., Signorello, B. (2019). On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_6

Download citation

Publish with us

Policies and ethics