\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On multi-dimensional hypocoercive BGK models

  • * Corresponding author: A. Arnold

    * Corresponding author: A. Arnold 
Abstract / Introduction Full Text(HTML) Figure(2) / Table(6) Related Papers Cited by
  • We study hypocoercivity for a class of linearized BGK models for continuous phase spaces. We develop methods for constructing entropy functionals that enable us to prove exponential relaxation to equilibrium with explicit and physically meaningful rates. In fact, we not only estimate the exponential rate, but also the second time scale governing the time one must wait before one begins to see the exponential relaxation in the L1 distance. This waiting time phenomenon, with a long plateau before the exponential decay "kicks in" when starting from initial data that is well-concentrated in phase space, is familiar from work of Aldous and Diaconis on Markov chains, but is new in our continuous phase space setting. Our strategies are based on the entropy and spectral methods, and we introduce a new "index of hypocoercivity" that is relevant to models of our type involving jump processes and not only diffusion. At the heart of our method is a decomposition technique that allows us to adapt Lyapunov's direct method to our continuous phase space setting in order to construct our entropy functionals. These are used to obtain precise information on linearized BGK models. Finally, we also prove local asymptotic stability of a nonlinear BGK model.

    Mathematics Subject Classification: Primary: 82C40, 35B40; Secondary: 35F25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  These two functions illustrate the time dependent decay estimate from (15). The values of Cd,λd correspond to the 1D case with L=2π, and we chose Ed(˜fI)=15. We also show the two time scales of the BGK equation: tinit marks the intersection point of the two blue curves and it corresponds to the generic transport time. t2:=tinit+2λ marks the intersection point of the exponential curve with the value 2/e, and t2tinit corresponds to the relaxation time scale. For larger values of L, tinit will be much larger

    Figure 2.  For each cell length L the constant 2μ(L) obtained from Lemma 3.1 and Remark 9(a) yields a bound for the entropy decay rate in Theorem 1.1

    Table 1.  We give a classification of Hermitian matrices C1, such that the associated matrix C=iC1+diag(0,0,c2,,cn) is hypocoercive. The restrictions on the coefficients of C1 are depicted as 0 if zero, if non-zero, and if there is no restriction. Furthermore, we give the corresponding two-parameter ansatz for the transformation matrix P=I+A. The guideline to construct an admissible Hermitian perturbation matrix A, is to put the parameters λj at the positions of the (non-zero) coupling elements of C1. In case (2B2) this will be apparent after a suitable transformation, see the proof of Theorem 2.9

    Case 2A:_
    C1=(),  P=I+(000λ100λ200¯λ200¯λ1000000),  (40)
    where the upper right submatrix Cur1C2×(n2) has rank 2. Here, we assume w.l.o.g. that |c1,4c2,3||c1,3c2,4| and c1,4c2,3c1,3c2,4, such that c2,30 and c1,40.
    Case 2B:_
    C1=(),       P=I+U(0λ10¯λ10λ20¯λ20000)U, (41)
    where the upper right submatrix Cur1C2×(n2) has rank 1. Again, we assume w.l.o.g. that c2,30. The right choice for the unitary matrix U depends on the structure of C1:
    (2B1)    C1=(000000),     U=I,                            (42)
    (2B2)     C1=(),     U=(Uul00I),         (43)
    with upper left submatrix Uul=1|c1,3|2+|c2,3|2(¯c2,3c1,3¯c1,3c2,3).
     | Show Table
    DownLoad: CSV

    Table 2.  Let δj(κ,α,β,γ,ω) denote the determinant of the upper left j×j submatrix of Dκ,α,β,γ,ω for integers j=1,2,,11. For our choice β=2α, γ=α and ω=6α, the minors δj(κ,α)=δj(κ,α,2α,α,6α) are given in this table

    δ1(κ,α) = 2α
    δ2(κ,α) = 42α2
    δ3(κ,α) = 83α3
    δ4(κ,α) = 444α4
    δ5(κ,α) = 223α4(442αα/κ2)
    δ6(κ,α) = δ5(κ,α)p6(κ,α)/
        with p6(κ,α):=54112α+22α/κ2.
    δ7(κ,α) = 2112δ5(κ,α)p7(κ,α)
        with p7(κ,α)=(p7,0(α)+p7,1(α)1κ2)1κ2+p7,2(α),
        p7,0(α)=932α234α, p7,1(α)=12α2,
        p7,2(α)=1624α21203α+222.
    δ8(κ,α) = 443α4δ7(κ,α)δ5(κ,α)p8(κ,α)
        with p8(κ,α)=23α262α+4α/κ2.
    δ9(κ,α) = 8α4p8(κ,α)p9(κ,α)
        with p9(κ,α)=(p9,0(α)+p9,1(α)1κ2)1κ2+p9,2(α),
        p9,0(α)=123α3+1982α268α, p9,1(α)=24α2,
        p9,2(α)=815α3+4114α22623α+442.
    δ10(κ,α) = 2δ9(κ,α),
    δ11(κ,α) = 64α4p8(κ,α)p11(κ,α)
        with p11(κ,α)=(p11,0(α)+p11,1(α)1κ2)1κ2+p11,2(α),
        p11,0(α)=724α43003α3+2942α268α, p11,1(α)=24α2,
        p11,2(α)=1626α49095α3+9634α23583α+442.
     | Show Table
    DownLoad: CSV

    Table 3.  Matrix Dκ,α,β,γ,ω,η with :=2π/L>0 and A:=3(2α3β), B:=23(2β3α), C:=3(2η3β), D:=3(3η2β), E:=22ω, and F:=2223β

    (2α00023α00A023α000000000000B00000iκβ00C003+36β0336β00000002γ00iκγ000002γ0000000000002ω00iκω000002ω0000000023α0002η00D0ηiκη0000000002η00iκγ0022γ000000000000000000iκω00E00000000000000Aiκβ00D00F023β0000000000000000000200000000000023α000η0023β02000000000000C00iκη0000022η0013η013η00000002γ0000000020000000000002ω0000000020000000003+36β0000000013η00200000000000000000000020000000336β0000000013η000020000000000000000000002000000000000000000000200000000000000000000020000000000000000000002000002η0000000000000002)
     | Show Table
    DownLoad: CSV

    Table 4.  Matrix Dκ,α,3α,α,α,α with :=2π/L>0 and B:=2(21)α, E:=22α, F:=222α

    (2α00023α00233α023α000000000000B00000iκ3α00323α003+12α0312α00000002α00iκα000002α0000000000002α00iκα000002α0000000023α0002α00B20αiκα0000000002α00iκα00E000000000000000000iκα00E00000000000000233αiκ3α00B200F02α0000000000000000000200000000000023α000α002α02000000000000323α00iκα00000E0013α013α00000002α0000000020000000000002α0000000020000000003+12α0000000013α00200000000000000000000020000000312α0000000013α000020000000000000000000002000000000000000000000200000000000000000000020000000000000000000002000002α0000000000000002)    (114)
     | Show Table
    DownLoad: CSV

    Table 5.  Let δj(κ,α,β,γ,ω,η) denote the determinant of the upper left j×j submatrix of Dκ,α,β,γ,ω,η for integers j=1,2,,21. For our choice β=3α, γ=α, ω=α and η=α, the minors δj(κ,α)=δj(κ,α,3α,α,α,α) for integers j=1,2,,13, are given in this table

    δ1(κ,α) = 2α
    δ2(κ,α) = 4(21)2α2
    δ3(κ,α) = 8(21)3α3
    δ4(κ,α) = 16(21)4α4
    δ5(κ,α) = 803(21)5α5
    δ6(κ,α) = 403(21)4α5p6(κ,α)
         with p6(κ,α)=42αακ2+4.
    δ7(κ,α) = 203(21)3α5p6(κ,α)2
    δ8(κ,α) = 122 α5 p6(κ,α)2 p8(κ,α)
        with p8(κ,α)=23232α56ακ2+109(21).
    δ9(κ,α) = 2 δ8(κ,α)
    δ10(κ,α) = 432 α5 p6(κ,α)2 p10(κ,α)
         with p10(κ,α)=9((21)2+1κ2)α2
            6((826)2+5κ2)α+40(21).
    δ11(κ,α) = 29 α5 p6(κ,α)2 p11(κ,α)
         with p11(κ,α)=(p11,0(α)+p11,1(α)1κ2)1κ2+p11,2(α)2,
         p11,0(α)=(542144)3α3+(672722)2α2(216+1442)α,
         p11,1(α)=18(6α)α2,
         p11,2(α)=(9542)3α3+(456224)2α2
           +(4728162)α+480(21).
    δ12(κ,α) = δ11(κ,α)p12(κ,α)p6(κ,α) = 29 α5 p6(κ,α) p11(κ,α) p12(κ,α)
         with p12(κ,α)=43α2122α+82ακ2.
    δ13(κ,α) = δ12(κ,α)p12(κ,α)p6(κ,α)=δ11(κ,α)(p12(κ,α)p6(κ,α))2=29 α5 p11(κ,α)p12(κ,α)2
     | Show Table
    DownLoad: CSV

    Table 6.  Let δj(κ,α,β,γ,ω,η) denote the determinant of the upper left j×j submatrix of Dκ,α,β,γ,ω,η for integers j=14,,21. For our choice β=3α, γ=α, ω=α and η=α, the minors δj(κ,α)=δj(κ,α,3α,α,α,α) are given in this table

    δ14(κ,α) = 19 (1+3)2 α5 p12(κ,α)2 p14(κ,α)
         with p14(κ,α)=(p14,0(α)+p14,1(α)1κ2)1κ2+2p14,2(α),
         p14,0(α)=(10867231802144)4α4
           +(360618243+72023396)3α3
           +(5766+5952311522+11760)2α2
           +(1152617283230423456)α,
         p14,1(α)=144 (3+2) (6α) α2,
         p14,2(α)=(14401806+82833242)4α4
           (93483366540036242)3α3
           +(11056+34246+63683+68642)2α2
           +(419265286+18563130562)α
           +(3840638403+768027680).
    δ15(κ,α) = 2 δ14(κ,α)
    δ16(κ,α) = 892+3(1+3)2 α5 p12(κ,α)2 p16(κ,α)
         with p16(κ,α)=(p16,0(α)+p16,1(α)1κ2)1κ2+2p16,2(α),
         p16,0(α)=36(2+2)4α4+(1442744)3α3
           +(2882+2976)2α2+(5762864)α,
         p16,1(α)=72(6α)α2,
         p16,2(α)=275α5+(1442+216)4α4+(2422412)3α3
           +(16322+3104)2α2+(32642+928)α+1920(21).
    δ17(κ,α) = 2 δ16(κ,α)
    δ18(κ,α) = 22 δ16(κ,α)
    δ19(κ,α) = 23 δ16(κ,α)
    δ20(κ,α) = 24 δ16(κ,α)
    δ21(κ,α) = 256(3+2)(242+61)23121(3+1)2 α5 p12(κ,α)2 p21(κ,α)
         with p21(κ,α)=(p21,0(α)+p21,1(α)1κ2)1κ2+2p21,2(α),
         p21,0(α)=(11522+2928)5α5+(46822664)4α4
           +(750242175272)3α3+(1304642+300768)2α2
           +(14400225056)α,
         p21,1(α)=(17282+4392)(6α)α2,
         p21,2(α)=77075α5+(252482+95000)4α4
           +(894482353228)3α3+(1588802+38048)2α2
           +(4172162+464416)α+1920(852109).
     | Show Table
    DownLoad: CSV
  • [1] F. Achleitner, A. Arnold and E. A. Carlen, On linear hypocoercive BGK models, in From Particle Systems to Partial Differential Equations III, Springer Proceedings in Mathematics & Statistics, 162 (2016), 1–37. doi: 10.1007/978-3-319-32144-8_1.
    [2] F. AchleitnerA. Arnold and D. Stürzer, Large-time behavior in non-symmetric Fokker-Planck equations, Riv. Mat. Univ. Parma, 6 (2015), 1-68. 
    [3] D. Aldous and P. Diaconis, Shuffling cards and stopping times, Amer. Math. Month., 93 (1986), 333-348.  doi: 10.1080/00029890.1986.11971821.
    [4] A. ArnoldA. Einav and T. Wöhrer, On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations, J. Differential Equations, 264 (2018), 6843-6872.  doi: 10.1016/j.jde.2018.01.052.
    [5] A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric FokkerPlanck equations with linear drift, preprint, arXiv: 1409.5425.
    [6] V. I. Arnold, Ordinary Differential Equations, MIT Press, Cambridge, Mass. -London, 1978.
    [7] P. Bergmann and J. L. Lebowitz, New approach to nonequilibrium processes, Phys. Rev., 99 (1955), 578-587.  doi: 10.1103/PhysRev.99.578.
    [8] P. L. BhatnagarE. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.  doi: 10.1103/PhysRev.94.511.
    [9] R. Bosi and M. J. Cáceres, The BGK model with external confining potential: Existence, long-time behaviour and time-periodic Maxwellian equilibria, J. Stat. Phys., 136 (2009), 297-330.  doi: 10.1007/s10955-009-9782-5.
    [10] E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot and C. Schmeiser, Hypocoercivity without confinement, preprint, arXiv: 1708.06180.
    [11] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1994. doi: 10.1137/1.9781611970777.
    [12] P. Diaconis, The cutoff phenomenon in finite Markov chains, Proc. Nat. Acad. Sci. USA, 93 (1996), 1659-1664.  doi: 10.1073/pnas.93.4.1659.
    [13] J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), 3807-3828.  doi: 10.1090/S0002-9947-2015-06012-7.
    [14] J. DolbeaultC. Mouhot and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math. Acad. Sci. Paris, 347 (2009), 511-516.  doi: 10.1016/j.crma.2009.02.025.
    [15] H. Grad, Note on N-dimensional Hermite polynomials, Comm. Pure Appl. Math., 2 (1949), 325-330.  doi: 10.1002/cpa.3160020402.
    [16] F. Hérau, Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46 (2006), 349-359. 
    [17] J. P. Hespanha, Linear Systems Theory, Princeton University Press, Princeton, 2009.
    [18] M. HitrikK. Pravda-Starov and J. Viola, Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators, Bull. Sci. Math., 141 (2017), 615-675. 
    [19] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
    [20] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.
    [21] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin-New York, 1976.
    [22] S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.  doi: 10.1017/S0308210500018308.
    [23] B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Differential Equations, 82 (1989), 191-205.  doi: 10.1016/0022-0396(89)90173-3.
    [24] B. Perthame and M. Pulvirenti, Weighted L bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal., 125 (1993), 289-295.  doi: 10.1007/BF00383223.
    [25] M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden Day, San Francisco, 1964.
    [26] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd ed., Academic Press, New York, 1980.
    [27] E. Ringeisen, Contributions a L'etude Mathématique des Équations Cinétiques, PhD thesis, Université Paris Diderot - Paris 7, 1991.
    [28] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.
    [29] T. UmedaS. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.  doi: 10.1007/BF03167068.
    [30] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), ⅳ+141 pp.  doi: 10.1090/S0065-9266-09-00567-5.
  • 加载中

Figures(2)

Tables(6)

SHARE

Article Metrics

HTML views(5401) PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return