Skip to main content

A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics

  • Conference paper
  • First Online:
Finite Difference Methods,Theory and Applications (FDM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9045))

Included in the following conference series:

  • 2667 Accesses

Abstract

This work deals with the derivation of a novel transparent boundary condition (TBC) for the coupling of the standard “parabolic” equation (SPE) in underwater acoustics (assuming cylindrical symmetry) with an elastic parabolic equation (EPE) for modelling the sea bottom extending hereby the existing TBCs for a fluid model of the seabed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  Google Scholar 

  2. Antonopoulou, D.C., Dougalis, V.A., Zouraris, G.E.: Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics. SIAM J. Numer. Anal. 47, 2752–2781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, A.: Numerically absorbing boundary conditions for quantum evolution equations. VLSI Des. 6, 313–319 (1998)

    Article  Google Scholar 

  4. Arnold, A., Ehrhardt, M.: Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comp. Phys. 145, 611–638 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Collins, M.D.: A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom. J. Acoust. Soc. Am. 86, 1459–1464 (1989)

    Article  Google Scholar 

  6. Dougalis, V.A., Sturm, F., Zouraris, G.E.: On an initial-boundary value problem for a wide-angle parabolic equation in a waveguide with a variable bottom. Math. Meth. Appl. Sci. 32, 1519–1540 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ehrhardt, M., Mickens, R.E.: Solutions to the discrete airy equation: application to parabolic equation calculations. J. Comput. Appl. Math. 172, 183–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Greene, R.R.: The rational approximation to the acoustic wave equation with bottom interaction. J. Acoust. Soc. Am. 76, 1764–1773 (1984)

    Article  Google Scholar 

  9. Greene, R.R.: A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces. J. Acoust. Soc. Am. 77, 1991–1998 (1985)

    Article  MATH  Google Scholar 

  10. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics. AIP Press, New York (1994)

    Google Scholar 

  11. Levy, M.F.: Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems. IEEE Trans. Antennas Propag. 45, 66–72 (1997)

    Article  Google Scholar 

  12. Makrakis, G.N.: Asymptotic study of the elastic seabed effects in ocean acoustics. Appl. Anal. 66, 357–375 (1997)

    Article  MathSciNet  Google Scholar 

  13. Papadakis, J.S.: Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics. NORDA Parabolic Equation Workshop, NORDA Technical note 143 (1982)

    Google Scholar 

  14. Papadakis, J.S., Taroudakis, M.I., Papadakis, P.J., Mayfield, B.: A new method for a realistic treatment of the sea bottom in the parabolic approximation. J. Acoust. Soc. Am. 92, 2030–2038 (1992)

    Article  Google Scholar 

  15. Papadakis, J.S.: Impedance bottom boundary conditions for the parabolic-type approximations in underwater acoustics. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations VII, pp. 585–590. IMACS, New Brunswick (1992)

    Google Scholar 

  16. Sturm, F., Kampanis, N.A.: Accurate treatment of a general sloping interface in a finite-element 3D narrow-angle PE model. J. Comput. Acoust. 15, 285–318 (2007)

    Article  MathSciNet  Google Scholar 

  17. Tappert, F.D.: The parabolic approximation method. In: Keller, J.B., Papadakis, J.S. (eds.) Wave Propagation and Underwater Acoustics. Lecture Notes in Physics, vol. 70, pp. 224–287. Springer, New York (1977)

    Chapter  Google Scholar 

  18. Thomson, D.J.: Wide-angle parabolic equation solutions to two range-dependent benchmark problems. J. Acoust. Soc. Am. 87, 1514–1520 (1990)

    Article  MathSciNet  Google Scholar 

  19. Wetton, B.T., Brooke, G.H.: One-way wave equations for seismoacoustic propagation in elastic waveguides. J. Acoust. Soc. Am. 87, 624–632 (1990)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Z.Y., Tindle, C.T.: Improved equivalent fluid approximations for a low shear speed ocean bottom. J. Acoust. Soc. Am. 98, 3391–3396 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The first author was supported by the FWF (project I 395-N16 and the doctoral school “Dissipation and dispersion in non-linear partial differential equations”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ehrhardt .

Editor information

Editors and Affiliations

Appendix: Laplace–Transformations

Appendix: Laplace–Transformations

$$\begin{aligned} \mathcal {L}^{-{\scriptscriptstyle 1}}\left\{ \sqrt{s-\gamma }-\sqrt{s}\right\}&=\frac{1}{2\sqrt{\pi }}(1-e^{\gamma t})\,t^{-\frac{3}{2}},\end{aligned}$$
(L.1)
$$\begin{aligned} \mathcal {L}^{-{\scriptscriptstyle 1}}\left\{ \frac{1}{\sqrt{s}}\right\}&=\frac{1}{\sqrt{\pi }}\,t^{-\frac{1}{2}}, \end{aligned}$$
(L.2)
$$\begin{aligned} \mathcal {L}^{-{\scriptscriptstyle 1}}\left\{ \hat{\psi }(s+\sigma )\right\}&=\psi (t)\,e^{-\sigma t}, \end{aligned}$$
(L.3)
$$\begin{aligned} \mathcal {L}^{-{\scriptscriptstyle 1}}\left\{ s\,\hat{\psi }(s+\sigma )\right\}&=\,\dfrac{d}{d t}\,\left\{ \psi (t)\,e^{-\sigma t}\right\} \quad \text {if}\; \psi (0)=0. \end{aligned}$$
(L.4)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Arnold, A., Ehrhardt, M. (2015). A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods,Theory and Applications. FDM 2014. Lecture Notes in Computer Science(), vol 9045. Springer, Cham. https://doi.org/10.1007/978-3-319-20239-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20239-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20238-9

  • Online ISBN: 978-3-319-20239-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics