Abstract
This work deals with the derivation of a novel transparent boundary condition (TBC) for the coupling of the standard “parabolic” equation (SPE) in underwater acoustics (assuming cylindrical symmetry) with an elastic parabolic equation (EPE) for modelling the sea bottom extending hereby the existing TBCs for a fluid model of the seabed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)
Antonopoulou, D.C., Dougalis, V.A., Zouraris, G.E.: Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics. SIAM J. Numer. Anal. 47, 2752–2781 (2009)
Arnold, A.: Numerically absorbing boundary conditions for quantum evolution equations. VLSI Des. 6, 313–319 (1998)
Arnold, A., Ehrhardt, M.: Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comp. Phys. 145, 611–638 (1998)
Collins, M.D.: A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom. J. Acoust. Soc. Am. 86, 1459–1464 (1989)
Dougalis, V.A., Sturm, F., Zouraris, G.E.: On an initial-boundary value problem for a wide-angle parabolic equation in a waveguide with a variable bottom. Math. Meth. Appl. Sci. 32, 1519–1540 (2009)
Ehrhardt, M., Mickens, R.E.: Solutions to the discrete airy equation: application to parabolic equation calculations. J. Comput. Appl. Math. 172, 183–206 (2004)
Greene, R.R.: The rational approximation to the acoustic wave equation with bottom interaction. J. Acoust. Soc. Am. 76, 1764–1773 (1984)
Greene, R.R.: A high-angle one-way wave equation for seismic wave propagation along rough and sloping interfaces. J. Acoust. Soc. Am. 77, 1991–1998 (1985)
Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics. AIP Press, New York (1994)
Levy, M.F.: Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems. IEEE Trans. Antennas Propag. 45, 66–72 (1997)
Makrakis, G.N.: Asymptotic study of the elastic seabed effects in ocean acoustics. Appl. Anal. 66, 357–375 (1997)
Papadakis, J.S.: Impedance formulation of the bottom boundary condition for the parabolic equation model in underwater acoustics. NORDA Parabolic Equation Workshop, NORDA Technical note 143 (1982)
Papadakis, J.S., Taroudakis, M.I., Papadakis, P.J., Mayfield, B.: A new method for a realistic treatment of the sea bottom in the parabolic approximation. J. Acoust. Soc. Am. 92, 2030–2038 (1992)
Papadakis, J.S.: Impedance bottom boundary conditions for the parabolic-type approximations in underwater acoustics. In: Vichnevetsky, R., Knight, D., Richter, G. (eds.) Advances in Computer Methods for Partial Differential Equations VII, pp. 585–590. IMACS, New Brunswick (1992)
Sturm, F., Kampanis, N.A.: Accurate treatment of a general sloping interface in a finite-element 3D narrow-angle PE model. J. Comput. Acoust. 15, 285–318 (2007)
Tappert, F.D.: The parabolic approximation method. In: Keller, J.B., Papadakis, J.S. (eds.) Wave Propagation and Underwater Acoustics. Lecture Notes in Physics, vol. 70, pp. 224–287. Springer, New York (1977)
Thomson, D.J.: Wide-angle parabolic equation solutions to two range-dependent benchmark problems. J. Acoust. Soc. Am. 87, 1514–1520 (1990)
Wetton, B.T., Brooke, G.H.: One-way wave equations for seismoacoustic propagation in elastic waveguides. J. Acoust. Soc. Am. 87, 624–632 (1990)
Zhang, Z.Y., Tindle, C.T.: Improved equivalent fluid approximations for a low shear speed ocean bottom. J. Acoust. Soc. Am. 98, 3391–3396 (1995)
Acknowledgments
The first author was supported by the FWF (project I 395-N16 and the doctoral school “Dissipation and dispersion in non-linear partial differential equations”).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix: Laplace–Transformations
Appendix: Laplace–Transformations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Arnold, A., Ehrhardt, M. (2015). A Transparent Boundary Condition for an Elastic Bottom in Underwater Acoustics. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods,Theory and Applications. FDM 2014. Lecture Notes in Computer Science(), vol 9045. Springer, Cham. https://doi.org/10.1007/978-3-319-20239-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-20239-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20238-9
Online ISBN: 978-3-319-20239-6
eBook Packages: Computer ScienceComputer Science (R0)