Skip to main content

On Linear Hypocoercive BGK Models

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations III

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 162))

  • 980 Accesses

Abstract

We study hypocoercivity for a class of linear and linearized BGK models for discrete and continuous phase spaces. We develop methods for constructing entropy functionals that prove exponential rates of relaxation to equilibrium. Our strategies are based on the entropy and spectral methods, adapting Lyapunov’s direct method (even for “infinite matrices” appearing for continuous phase spaces) to construct appropriate entropy functionals. Finally, we also prove local asymptotic stability of a nonlinear BGK model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplicity.

References

  1. Achleitner, F., Arnold, A., Stürzer, D.: Large-time behavior in non-symmetric Fokker-Planck equations. Rivista di Matematica della Università di Parma 6, 1–68 (2015)

    MATH  Google Scholar 

  2. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift (2014). arXiv:1409.5425

  3. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial. Differ. Equ. 26(1–2), 43–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergmann, P., Lebowitz, J.L.: A new approach to nonequilibrium processes. Phys. Rev. 99(2), 578–587 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Google Scholar 

  6. Bobkov, S.G., Tetali, P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theor. Probab. 19(2), 289–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bosi, R., Cáceres, M.J.: The BGK model with external confining potential: existence, long-time behaviour and time-periodic Maxwellian equilibria. J. Stat. Phys. 136(2), 297–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coleman, R.: On Krawtchouk polynomials (2011). arXiv:1101.1798

  9. Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347(9–10), 511–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hérau, F.: Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. 46(3–4), 349–359 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Kac, M.: Foundations of kinetic theory. In: Neyman, J. (ed.) Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability, University of California, vol 3, pp. 171–197 (1956)

    Google Scholar 

  14. Michel, A.N., Hou, L., Liu, D.: Stability of Dynamical Systems, 2nd edn. Birkhäuser/Springer (2015)

    Google Scholar 

  15. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Diff. Equ. 82(1), 191–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  18. Perthame, B., Pulvirenti, M.: Weighted \(L^\infty \) bounds and uniqueness for the Boltzmann BGK model. Arch. Rational Mech. Anal. 125(3), 289–295 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seneta, E.: Nonnegative matrices and Markov chains. Springer Series in Statistics, 2nd edn. Springer-Verlag, New York (1981)

    Google Scholar 

  20. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier (2007)

    Google Scholar 

  21. Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202(950) (2009)

    Google Scholar 

Download references

Acknowledgments

The second author (AA) was supported by the FWF-doctoral school “Dissipation and dispersion in non-linear partial differential equations”. The third author (EC) was partially supported by U.S. N.S.F. grant DMS 1501007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Achleitner, F., Arnold, A., Carlen, E.A. (2016). On Linear Hypocoercive BGK Models. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations III. Springer Proceedings in Mathematics & Statistics, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-319-32144-8_1

Download citation

Publish with us

Policies and ethics