Skip to main content
Log in

The ‘electromagnetic’ Wigner equation for an electron with spin

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

We derive and analyse the three-dimensional quantum Liouville equation for an electron with spin in an external electromagnetic field. By using methods of semigroup theory, we prove existence and uniqueness of the initial value problem. Expanding the solution into a series of pure states, we derive the existence of a generalized particle density and anL -estimate on the solution. The last section is devoted to an analysis of the classical and electrostatic limits.

Zusammenfassung

Die drei-dimensionale Quanten-Liouville Gleichung für ein Elektron mit Spin in einem äuβeren elektromagnetischen Feld wird hergeleitet und analysiert. Mit Hilfe der Halbgruppen-Theorie werden Existenz und Eindeutigkeit des Anfangswertproblems bewiesen. Aus der Entwicklung der Lösung in eine Reihe von reinen Zuständen schließen wir die Existenz einer verallgemeinerten Teilchendichte und erhalten eineL -Abschätzung für die Lösung. Im letzten Kapitel werden der klassische und elektrostatische Limes untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shubin,Pseudodifferential Operators and Spectral Theory, Springer, Berlin 1986.

    Google Scholar 

  2. E. Wigner, Phys. Rev.40 (1932).

  3. V. I. Tatarskii,The Wigner representation of quantum mechanics, Sov. Phys. Usp.26, 311–327 (1983).

    Google Scholar 

  4. N. C. Klucksdahl, A. M. Kriman, C. Ringhofer and D. F. Ferry,Quantum tunneling properties from a Wigner function study, Solid State Electronics31, 743–746 (1988).

    Google Scholar 

  5. P. A. Markowich,On the equivalence of the Schrödinger and the quantum Liouville equation, Math. Meth. Appl. Sci.11, 459–469 (1989).

    Google Scholar 

  6. P. A. Markowich and C. Ringhofer,An analysis of the quantum Liouville equation, ZAMM69, 121–127 (1989).

    Google Scholar 

  7. L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik I, 2nd Ed, Akademie, Berlin 1963.

    Google Scholar 

  8. L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik II, 2nd Ed, Akademie, Berlin 1964.

    Google Scholar 

  9. L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik III, 7th Ed, Akademie, Berlin 1985.

    Google Scholar 

  10. O. Hittmair,Lehrbuch der Quantentheorie, Thiemig, München 1970.

    Google Scholar 

  11. S. R. de Groot and L. G. Suttorp,Foundations of Electrodynamics. North-Holland, Amsterdam 1972.

    Google Scholar 

  12. P. Carruthers and F. Zachariasen,Quantumcollision theory with phase-space distributions, Rev. Mod. Phys.55, (1983).

  13. M. Reed and B. Simon,I, Functional Analysis, Academic Press, New York 1972.

    Google Scholar 

  14. M. Reed and B. Simon,II, Fourier Analysis, Self Adjointness, Academic Press, New York 1975.

    Google Scholar 

  15. B. Simon,Schrödinger operators with singular magnetic vector potentials, Math. Z.131, 361–370 (1973).

    Google Scholar 

  16. P. Degond,Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Meth. Appl. Sci.8, 533–558 (1986).

    Google Scholar 

  17. T. Kato,Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg, New York 1966.

    Google Scholar 

  18. A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, Berlin, Heidelberg, Tokyo 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, A., Steinrück, H. The ‘electromagnetic’ Wigner equation for an electron with spin. Z. angew. Math. Phys. 40, 793–815 (1989). https://doi.org/10.1007/BF00945803

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945803

Keywords