Abstract
We derive and analyse the three-dimensional quantum Liouville equation for an electron with spin in an external electromagnetic field. By using methods of semigroup theory, we prove existence and uniqueness of the initial value problem. Expanding the solution into a series of pure states, we derive the existence of a generalized particle density and anL ∞-estimate on the solution. The last section is devoted to an analysis of the classical and electrostatic limits.
Zusammenfassung
Die drei-dimensionale Quanten-Liouville Gleichung für ein Elektron mit Spin in einem äuβeren elektromagnetischen Feld wird hergeleitet und analysiert. Mit Hilfe der Halbgruppen-Theorie werden Existenz und Eindeutigkeit des Anfangswertproblems bewiesen. Aus der Entwicklung der Lösung in eine Reihe von reinen Zuständen schließen wir die Existenz einer verallgemeinerten Teilchendichte und erhalten eineL ∞-Abschätzung für die Lösung. Im letzten Kapitel werden der klassische und elektrostatische Limes untersucht.
Similar content being viewed by others
References
A. Shubin,Pseudodifferential Operators and Spectral Theory, Springer, Berlin 1986.
E. Wigner, Phys. Rev.40 (1932).
V. I. Tatarskii,The Wigner representation of quantum mechanics, Sov. Phys. Usp.26, 311–327 (1983).
N. C. Klucksdahl, A. M. Kriman, C. Ringhofer and D. F. Ferry,Quantum tunneling properties from a Wigner function study, Solid State Electronics31, 743–746 (1988).
P. A. Markowich,On the equivalence of the Schrödinger and the quantum Liouville equation, Math. Meth. Appl. Sci.11, 459–469 (1989).
P. A. Markowich and C. Ringhofer,An analysis of the quantum Liouville equation, ZAMM69, 121–127 (1989).
L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik I, 2nd Ed, Akademie, Berlin 1963.
L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik II, 2nd Ed, Akademie, Berlin 1964.
L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik III, 7th Ed, Akademie, Berlin 1985.
O. Hittmair,Lehrbuch der Quantentheorie, Thiemig, München 1970.
S. R. de Groot and L. G. Suttorp,Foundations of Electrodynamics. North-Holland, Amsterdam 1972.
P. Carruthers and F. Zachariasen,Quantumcollision theory with phase-space distributions, Rev. Mod. Phys.55, (1983).
M. Reed and B. Simon,I, Functional Analysis, Academic Press, New York 1972.
M. Reed and B. Simon,II, Fourier Analysis, Self Adjointness, Academic Press, New York 1975.
B. Simon,Schrödinger operators with singular magnetic vector potentials, Math. Z.131, 361–370 (1973).
P. Degond,Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Meth. Appl. Sci.8, 533–558 (1986).
T. Kato,Perturbation Theory for Linear Operators, Springer, Berlin-Heidelberg, New York 1966.
A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, Berlin, Heidelberg, Tokyo 1983.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Arnold, A., Steinrück, H. The ‘electromagnetic’ Wigner equation for an electron with spin. Z. angew. Math. Phys. 40, 793–815 (1989). https://doi.org/10.1007/BF00945803
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00945803