Skip to main content
Log in

A Piezoelectric Euler-Bernoulli Beam with Dynamic Boundary Control: Stability and Dissipative FEM

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We present a mathematical and numerical analysis on a control model for the time evolution of a multi-layered piezoelectric cantilever with tip mass and moment of inertia, as developed by Kugi and Thull (Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, Lecture Notes in Control and Information Sciences, pp. 351–368, 2005). This closed-loop control system consists of the inhomogeneous Euler-Bernoulli beam equation coupled to an ODE system that is designed to track both the position and angle of the tip mass for a given reference trajectory. This dynamic controller only employs first order spatial derivatives, in order to make the system technically realizable with piezoelectric sensors. From the literature it is known that it is asymptotically stable (Kugi and Thull in Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, Lecture Notes in Control and Information Sciences, pp. 351–368, 2005). But in a refined analysis we first prove that this system is not exponentially stable.

In the second part of this paper, we construct a dissipative finite element method, based on piecewise cubic Hermitian shape functions and a Crank-Nicolson time discretization. For both the spatial semi-discretization and the full xt-discretization we prove that the numerical method is structure preserving, i.e. it dissipates energy, analogous to the continuous case. Finally, we derive error bounds for both cases and illustrate the predicted convergence rates in a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A square matrix is called a Hurwitz matrix if all its eigenvalues have negative real parts.

References

  1. Arnold, A., Unterreiter, A.: Entropy decay of discretized Fokker-Planck equations I—temporal semi-discretization. Comput. Math. Appl. 46(10–11), 1683–1690 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balakrishnan, A.V., Taylor, L.: The SCOLE design challenge. In: 3rd Annual NASASCOLE Workshop, NASA Technical Memorandum, vol. 89075, pp. 385–412. Aeronautics and Space Administration, Washington (1986)

    Google Scholar 

  3. Balas, M.J.: Feedback control of flexible systems. IEEE Trans. Autom. Control 23(4), 673–679 (1978)

    Article  MathSciNet  Google Scholar 

  4. Banks, H.T., Rosen, I.G.: A Galerkin method for the estimation of parameters in hybrid systems governing the vibration of flexible beams with TIP bodies. National Aeronautics and Space Administration Langley Research Center, Institute for Computer Applications in Science and Engineering, NASA Document ID: 19850011424, NASA Report/Patent No NASA-CR-172537, ICASE Report No 85–7 (1985)

  5. Banks, H.T., Rosen, I.G.: Computational methods for the identification of spatially varying stiffness and damping in beams. Control Theory Adv. Technol. 3(1), 1–32 (1987)

    MATH  MathSciNet  Google Scholar 

  6. Bar-Yoseph, P.Z., Fisher, D., Gottlieb, O.: Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam. Comput. Mech. 19(1), 136–151 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Chakravarthy, A., Evans, K.A., Evers, J.: Sensitivities and functional gains for a flexible aircraft-inspired model. In: American Control Conference (ACC) (2010)

    Google Scholar 

  9. Chen, G., Krantz, S.G., Ma, D.W., Wayne, C.E., West, H.H.: The Euler-Bernoulli beam equation with boundary energy dissipation. In: Lee, S.J. (ed.) Operator Methods for Optimal Control Problems. Lecture Notes in Pure and Applied Mathematics, vol. 108, pp. 67–96. Marcel Dekker, New York (1987)

    Google Scholar 

  10. Chentouf, B., Wang, J.M.: Optimal energy decay for a nonhomogeneous flexible beam with a tip mass. J. Dyn. Control Syst. 13(1), 37–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Choo, S.M., Chung, S.K., Kannan, R.: Finite element Galerkin solutions for the strongly damped extensible beam equations. Korean J. Comput. Appl. Math. 9(1), 27–43 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Dadfarnia, M., Jalili, N., Xian, B., Dawson, D.M.: Lyapunov-based vibration control of translational Euler-Bernoulli beams using the stabilizing effect of beam damping mechanisms. J. Vib. Control 10(7), 933–961 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Falsone, G., Sattineri, D.: An Euler-Bernoulli-like finite element method for Timoshenko beams. Mech. Res. Commun. 38(1), 12–16 (2011)

    Article  MATH  Google Scholar 

  14. Golo, G., Talasila, V., van der Schaft, A., Maschke, B.: Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004)

    Article  MATH  Google Scholar 

  15. Guo, B.Z.: On boundary control of a hybrid system with variable coefficients. J. Optim. Theory Appl. 114(2), 373–395 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, B.Z.: Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients. SIAM J. Control Optim. 40(6), 1905–1923 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo, B.Z., Wang, J.M.: Riesz basis generation of an abstract second-order partial differential equation system with general non-separated boundary conditions. Numer. Funct. Anal. Optim. 27(3–4), 291–328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huang, F.L.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1(1), 43–56 (1985)

    MATH  Google Scholar 

  19. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice–Hall, Engelwood Cliffs (2003)

    Google Scholar 

  20. Karmar, M., Mugnolo, D., Nagel, R.: Semigroups for initial boundary value problems. In: Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics, pp. 275–292. Birkhäuser, Basel (2003)

    Chapter  Google Scholar 

  21. Krantz, S.G.: Handbook of Complex Variables, p. 74. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  22. Kugi, A., Thull, D.: Infinite-dimensional decoupling control of the tip position and the tip angle of a composite piezoelectric beam with tip mass. In: Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems. Lecture Notes in Control and Information Sciences, pp. 351–368 (2005)

    Chapter  Google Scholar 

  23. Liang, J., Chen, Y.Q., Guo, B.Z.: A hybrid symbolic-numerical simulation method for some typical boundary control problems. Simulation 80(11), 635–643 (2004)

    Article  Google Scholar 

  24. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  25. Littman, W., Markus, L.: Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152, 281–330 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Luo, Z.H., Guo, B.Z., Morgül, Ö.: Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer, New York (1999)

    Book  MATH  Google Scholar 

  27. Miletic, M.: Ph.D. Thesis, Vienna University of Technology (2013)

  28. Morgül, Ö.: Stabilization and disturbance rejection for the beam equation. IEEE Trans. Autom. Control 46(12), 1913–1918 (2001)

    Article  MATH  Google Scholar 

  29. Morgül, Ö.: Dynamic boundary control of a Euler-Bernoulli beam. IEEE Trans. Autom. Control 37(5), 639–642 (1992)

    Article  Google Scholar 

  30. Naimark, M.A.: Lineare Differentialoperatoren. Mathematische Lehrbücher und Monographien, II. Abteilung Mathematische Monographien, vol. 11. Akademie-Verlag, Berlin (1960)

    MATH  Google Scholar 

  31. Prosper, N.: Vibrations of a gravity-loaded cantilever beam with tip mass. Postgraduate Thesis, African Institute for Mathematical Sciences (2010)

  32. Rao, B.P.: Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33, 440–454 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Scott, L.R.: Numerical Analysis. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  34. Shames, I.M., Dym, C.L.: Energy and Finite Element Methods in Structural Mechanics. New Age International (P) Ltd., New Delhi (2006)

    Google Scholar 

  35. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  36. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  37. Tzes, A.P., Yurkovich, S., Langer, F.D.: A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems. In: IEEE International Conference on Systems Engineering, pp. 557–560 (1989)

    Google Scholar 

  38. Villegas, J.A., Zwart, H., Le Gorrec, Y., Maschke, B.: Exponential stability of a class of boundary control systems. IEEE Trans. Autom. Control 54(1), 142–147 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Arnold.

Additional information

The authors were supported by the doctoral school PDE-Tech of TU Wien and the FWF-project I395-N16. The authors acknowledge a sponsorship by Clear Sky Ventures. We are grateful to A. Kugi and T. Meurer for introducing us to this topic, their help, and the many stimulating discussions.

Appendices

Appendix A

The following proof is an adaption of the proof of Theorem 8.1 in [24], for the system studied here. It is included for the sake of completeness.

Proof of Theorem 4

(a)–existence: Let \(\{ \hat{w}_{k} \}_{k=1}^{\infty}\) be a sequence of functions that is an orthonormal basis for H, and an orthogonal basis for V. We introduce \(W_{m} := \mathit{span} \{ \hat {w}_{1}, \dots, \hat{w}_{m}\}, \forall m \in\mathbb{N}\). Furthermore, let sequences \(\hat{u}_{m0}, \hat{v}_{m0} \in W_{m}\) be given so that

$$ \begin{aligned} \hat{u}_{m0} &\rightarrow \hat{u}_0 \quad \text{in } V, \\ \hat{v}_{m0} &\rightarrow\hat{v}_0 \quad \text{in } H. \end{aligned} $$
(A.1)

For a fixed \(m \in\mathbb{N}\) we consider the Galerkin approximation

$$\hat{u}_m(t)= \bigl((u_m)_x(L),u_m(L), u_m\bigr) = \sum_{k=1}^{m}{d_m^k(t) \hat{w}_k}, $$

with \(d_{m}^{k}(t) \in\mathbb{R}\), which solves the formulation (3.3) for all \(\hat{w} \in W_{m}\):

$$ \bigl((\hat{u}_m)_{tt}, \hat{w} \bigr)_H + a(\hat{u}_m, \hat{w}) + b\bigl(( \hat{u}_m)_t, \hat{w}\bigr) + e_1( \zeta_{1,m}, \hat{w}) + e_2(\zeta_{2,m}, \hat{w})= 0, $$
(A.2)

and ζ 1,m ,ζ 2,m solve the ODE system

$$\begin{aligned} \begin{aligned} (\zeta_{1,m})_t(t) & = A_{1} \zeta_{1,m}(t) + b_{1} \,^1(\hat{u}_m)_{t} (t), \\ (\zeta_{2,m})_t(t) & = A_{2} \zeta_{2,m}(t) + b_{2} \,^2(\hat {u}_m)_{t} (t), \end{aligned} \end{aligned}$$
(A.3)

with the initial conditions

$$\begin{aligned} \hat{u}_m(0) = & \hat{u}_{m0} , \\ (\hat{u}_m)_t(0) = & \hat{v}_{m0} , \\ \zeta_{1,m}(0) = & \zeta_{0,1} , \\ \zeta_{2,m}(0) = & \zeta_{0,2}. \end{aligned}$$

This problem is a linear system of second order differential equations, with a unique solution satisfying \(\hat{u}_{m} \in C^{2}([0, T]; V)\) and \(\zeta_{1,m}, \zeta_{2,m} \in C^{1}([0,T];\mathbb{R}^{n})\). Next, we define an energy functional, analogous to (3.11), for the trajectory \((\hat{u}, \zeta_{1}, \zeta_{2})\):

$$\begin{aligned} \hat{E}(t; \hat{u}, \zeta_1, \zeta_2) := & \frac{1}{2} \bigl\| \hat{u}(t) \bigr\| ^2_V + \frac{k_1}{2} \bigl(^1\hat{u}(t)\bigr)^2 + \frac{k_2}{2} \bigl(^2\hat{u}(t)\bigr)^2 + \frac{1}{2} \bigl\| \hat{u}_t(t) \bigr\| ^2_H \\ &{} + \frac{1}{2} \zeta_{1}^{\top}(t) P_1 \zeta_{1}(t) + \frac{1}{2} \zeta_{2}^{\top}(t) P_2 \zeta_{2}(t) \\ = & \bigl\| \bigl(u, u_t, \zeta_1, \zeta_2, J u_{tx}(J), M u_t(L)\bigr) \bigr\| _{\mathcal{H}}. \end{aligned}$$

Taking \(\hat{w} = (\hat{u}_{m})_{t}\) in (A.2) and using the smoothness of \(\hat{u}_{m}, \zeta_{1,m}, \zeta_{2,m}\), a straightforward calculation yields

$$\begin{aligned} \frac{d}{dt} \hat{E}(t;\hat{u}_m, \zeta_{1,m}, \zeta_{2,m}) = & - \delta_1 \bigl(^1(\hat{u}_m)_{t}\bigr)^2 - \frac{1}{2} \bigl(\zeta_{1,m} \cdot q_1 + \tilde{\delta}_1 \bigl(^1(\hat{u}_m)_{t} \bigr) \bigr)^2 \\ &{} - \delta_2 \bigl(^2(\hat{u}_m)_{t} \bigr)^2 - \frac{1}{2} \bigl(\zeta_{2,m} \cdot q_2 + \tilde{\delta}_2\bigl(^2( \hat{u}_m)_{t}\bigr) \bigr)^2 \\ &{} - \frac{\epsilon_1}{2} (\zeta_{1,m})^{\top} P_1 \zeta_{1,m}- \frac{\epsilon_2}{2} (\zeta_{2,m})^{\top} P_2 \zeta_{2,m} \\ =:& F(t;\hat{u}_m, \zeta_{1,m}, \zeta_{2,m}) \le0, \end{aligned}$$
(A.4)

which is analogous to (3.1) for the continuous solution. Hence

$$ \hat{E}(t;\hat{u}_m,\zeta_{1,m}, \zeta_{2,m}) \le\hat{E}(0;\hat{u}_m,\zeta_{0,1}, \zeta_{0,2}), \quad t \ge0, $$

which implies

$$ \begin{aligned} &\{\hat{u}_m \}_{m \in\mathbb{N}} \quad \text{is bounded in } C\bigl([0,T]; V\bigr), \\ &\bigl\{ (\hat{u}_m)_t \bigr\} _{m \in\mathbb{N}} \quad \text{is bounded in } C\bigl([0,T]; H\bigr), \\ &\{\zeta_{1,m} \}_{m \in\mathbb{N}}, \qquad \{\zeta_{2,m} \}_{m \in\mathbb{N}} \quad \text{are bounded in } C\bigl([0,T]; \mathbb{R}^n \bigr). \end{aligned} $$
(A.5)

Due to these boundedness results, it holds \(\forall\hat{w} \in V\):

$$\begin{aligned} \bigl|a\bigl(\hat{u}_m(t), \hat{w}\bigr) + b\bigl((\hat{u}_m)_t(t), \hat{w}\bigr) + e_1\bigl(\zeta_{1,m}(t), \hat{w}\bigr) + e_2\bigl(\zeta_{2,m}(t), \hat{w}\bigr)\bigr| \le& D_1 \| \hat{w} \|_{V}, \end{aligned}$$

a.e. on (0,T), with some constant D 1>0 which does not depend on m. Now, let \(m \in\mathbb{N}\) be fixed. Furthermore, let \(\hat{w} \in V\), and \(\hat{w} = \hat{w}_{1} + \hat{w}_{2}\), such that \(\hat{w}_{1} \in W_{m}\) and \(\hat{w}_{2}\) orthogonal to W m in H. Then we obtain from (A.2):

$$\begin{aligned} \bigl((\hat{u}_m)_{tt}, \hat{w}\bigr)_H = & \bigl((\hat{u}_m)_{tt}, \hat{w}_1 \bigr)_H \\ = & -a(\hat{u}_m, \hat{w}_1) - b\bigl(( \hat{u}_m)_t, \hat{w}_1\bigr) - e_1(\zeta_{1,m}, \hat{w}_1) - e_2( \zeta_{2,m}, \hat{w}_1) \\ \le& D_1 \|\hat{w}_1 \|_V \le D_1 \|\hat{w} \|_V. \end{aligned}$$

This implies that also \((\hat{u}_{m})_{tt}\) is bounded in L 2(0,T;V′). Furthermore, from (A.3) it trivially follows that \(\{(\zeta_{1,m})_{t} \}_{m \in\mathbb{N}}\) and \((\{\zeta_{2,m})_{t} \}_{m \in\mathbb{N}}\) are also bounded in \(L^{2}(0,T; \mathbb{R}^{n})\).

According to the Eberlein-S̆muljan Theorem, there exist subsequences \(\{ \hat{u}_{m_{l}}\}_{l \in\mathbb{N}}\), \(\{ \zeta_{1,m_{l}}\}_{l \in \mathbb{N}}\), \(\{ \zeta_{2,m_{l}}\}_{l \in\mathbb{N}}\), and \(\hat{u} \in L^{2}(0,T ; V)\), with \(\hat{u}_{t} \in L^{2}(0,T ; H)\), \(\hat{u}_{tt} \in L^{2}(0,T ; V')\), and \(\zeta_{1}, \zeta_{2} \in H^{1}(0,T;\mathbb{R}^{n})\) such that

$$\begin{aligned} \{\hat{u}_{m_l} \} \rightharpoonup& u \quad \text{in }L^{2}(0,T; V), \\ \bigl\{ (\hat{u}_{m_l})_t \bigr\} \rightharpoonup& u_t \quad \text{in }L^{2}(0,T; H), \\ \bigl\{ (\hat{u}_{m_l})_{tt} \bigr\} \rightharpoonup& u_{tt} \quad \text{in } L^{2}\bigl(0,T; V'\bigr), \\ \{\zeta_{1,m_l} \} \rightharpoonup& \zeta_1 \quad \text{in } L^{2}\bigl(0,T; \mathbb{R}^n\bigr), \\ \{\zeta_{2,m_l} \} \rightharpoonup& \zeta_2 \quad \text{in } L^{2}\bigl(0,T;\mathbb{R}^n\bigr), \\ \bigl\{ (\zeta_{1,m_l})_t \bigr\} \rightharpoonup& ( \zeta_1)_t \quad \text{in } L^{2}\bigl(0,T; \mathbb{R}^n\bigr), \\ \bigl\{ (\zeta_{2,m_l})_t \bigr\} \rightharpoonup& ( \zeta_2)_t \quad \text{in } L^{2}\bigl(0,T; \mathbb{R}^n\bigr). \end{aligned}$$
(A.6)

Therefore, passing to the limit in (A.2) and (A.3), we see that \(\hat{u}\) and ζ 1,ζ 2 solve (3.4) and (3.5).

(b)–additional regularity: From \(\zeta_{1}, \zeta_{2} \in H^{1}(0, T; \mathbb{R}^{n})\) follows the continuity of the controller functions, i.e. (3.7b). It is easily seen from the construction of the weak solution and (A.5) that \(\hat{u}\) satisfies (3.7a). Equation (3.7c) follows immediately due to Lemma 2, after, possibly, a modification on a set of measure zero. Equation (3.7d) follows from Lemma 2 and the ‘Duality Theorem’ (see [24], Chap. 6.2, p. 29) which states: for all θ∈(0,1), it holds

$$[X, Y]_{\theta}' = \bigl[Y', X'\bigr]_{1 - \theta}. $$

(a)–initial conditions, uniqueness: It remains to show that \(\hat{u}\), ζ 1, and ζ 2 satisfy the initial conditions. For this purpose, we integrate by parts (in time) in (3.4), with \(\hat{w} \in C^{2}([0, T]; V)\) such that \(\hat{w}(T) = 0\) and \(\hat{w}_{t}(T) = 0\):

$$\begin{aligned} & \int_{0}^{T}{ \bigl[ (\hat{u}, \hat{w}_{tt})_H + a(\hat{u}, \hat{w}) + b( \hat{u}_t, \hat{w}) + e_1(\zeta_1, \hat{w}) + e_2(\zeta_2, \hat{w}) \bigr] \, d \tau} \\ &\quad = -\bigl(\hat{u}(0), \hat{w}_t(0)\bigr)_H + {_{V'}\bigl\langle \hat{u}_t(0), \hat{w}(0)\bigr\rangle _{V}}. \end{aligned}$$
(A.7)

Similarly, for a fixed m it follows from (A.2):

$$\begin{aligned} & \int_{0}^{T}{ \bigl[ (\hat{u}_m, \hat{w}_{tt})_H + a( \hat{u}_m, \hat{w}) + b\bigl((\hat{u}_m)_t, \hat{w}\bigr) + e_1(\zeta_{1m}, \hat{w}) + e_2(\zeta_{2m}, \hat{w}) \bigr] \, d \tau} \\ &\quad = -\bigl(\hat{u}_{m0}, \hat{w}_t(0)\bigr)_H + \bigl(\hat{v}_{m0}, \hat{w}(0)\bigr)_H. \end{aligned}$$
(A.8)

Due to (A.1) and (A.6), passing to the limit in (A.8) along the convergent subsequence \(\{\hat{u}_{m_{l}}\}\) gives

$$\begin{aligned} & \int_{0}^{T}{ \bigl[ (\hat{u}, \hat{w}_{tt})_H + a(\hat{u}, \hat{w}) + b( \hat{u}_t, \hat{w}) + e_1(\zeta_1, \hat{w}) + e_2(\zeta_2, \hat{w}) \bigr] \, d \tau} \\ &\quad = -\bigl(\hat{u}_0, \hat{w}_t(0)\bigr)_H + \bigl(\hat{v}_0, \hat{w}(0)\bigr)_H. \end{aligned}$$
(A.9)

Comparing (A.7) with (A.9), implies \(\hat {u}(0) = \hat{u}_{0}\) and \(\hat{u}_{t}(0) = \hat{v}_{0}\). Analogously we obtain ζ 1(0)=ζ 0,1 and ζ 2(0)=ζ 0,2.

In order to show uniqueness, let \((\hat{u}, \zeta_{1}, \zeta_{2})\) be a solution to (3.4) and (3.5) with zero initial conditions. Let s∈(0,T) be fixed, and set

$$ \hat{U}(t):= \left \{ \begin{array}{l@{\quad}l} \int_{t}^{s}{\hat{u}(\tau) \,d\tau}, & t < s, \\ 0, & t \ge s, \end{array} \right . $$

and

$$ Z_i(t):= \int_{0}^{t}{ \zeta_i(\tau) \,d\tau}, $$

for i=1,2. Integrating (3.5) over (0,t) yields with (1.7)

$$\begin{aligned} \frac{1}{2} \frac{d}{dt}\bigl(Z_i^{\top} P_i Z_i\bigr) (t) = & - \frac{1}{2} \epsilon_i Z_i^{\top}(t) P_i Z_i(t) - \frac{1}{2} \bigl(q_i \cdot Z_i(t) + \tilde{\delta}_i \bigl(^i \hat{u}(t)\bigr)\bigr)^2 \\ &{} + (d_i - \delta_i) \bigl(^i \hat{u}(t)\bigr)^2 + Z_i(t) \cdot c_i \bigl(^i \hat{u}(t)\bigr), \end{aligned}$$
(A.10)

for 0≤tT, i=1,2. Integrating (3.4) with \(\hat{w} = \hat{U}\) over [0,T], and performing partial integration in time, yields

$$\begin{aligned} & \int_{0}^{s}{\bigl( \hat{u}_{t}(\tau), \hat{u}(\tau)\bigr)_{H} - a\bigl( \hat{U}_t(\tau), \hat{U}(\tau)\bigr) + b\bigl(\hat{u}(\tau), \hat{u}( \tau)\bigr) \,d\tau} \\ &\quad {} + \sum_{i = 1}^{2} \int _{0}^{s}{Z_i(\tau) \cdot c_i \bigl(^i\hat{u}(\tau)\bigr) \,d\tau}= 0. \end{aligned}$$
(A.11)

From (A.10) and (A.11) follows

$$\begin{aligned} & \int_{0}^{s}{\frac{d}{dt} \Biggl( \frac{1}{2} \bigl\| \hat{u}(\tau)\bigr\| ^2_{H} - \frac{1}{2} a\bigl(\hat{U}(\tau), \hat{U}(\tau)\bigr) + \frac{1}{2} \sum_{i=1}^2{Z_i^{\top}( \tau) P_i Z_i(\tau)} \Biggr) \,d\tau} \\ &\quad = - \sum_{i = 1}^{2} \int _{0}^{s}{ \biggl( \delta_i \bigl(^i\hat{u}(\tau)\bigr)^2 + \frac{\epsilon_i}{2} Z_i^{\top}(\tau)P_i Z_i(\tau) + \frac{1}{2} \bigl(q_i \cdot Z_i(\tau) + \tilde{\delta}_i \bigl(^i \hat{u}\bigr) (\tau) \bigr)^2 \biggr) \,d\tau}. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{1}{2} \bigl\| \hat{u}(s)\bigr\| ^2_{H} + \frac{1}{2} a\bigl(\hat{U}(0), \hat{U}(0)\bigr) + \sum _{i=1}^2{\frac{1}{2} Z_i^{\top}(s) P_i Z_i(s)} \le& 0. \end{aligned}$$

The matrices P j ,j=1,2 are positive definite, and the bilinear form a(.,.) is coercive. Hence \(\hat{u}(s) = 0\), \(\hat{U}(0) = 0\), and Z i (s)=0. Since s∈(0,T) was arbitrary, \(\hat{u} \equiv0\), ζ i ≡0, i=1,2 follows. □

Before the proof of the continuity in time of the weak solution, a definition and a lemma will be stated.

Definition 1

Let Y be a Banach space. Then

$$\begin{aligned} C_w\bigl([0, T]; Y\bigr) := & \bigl\{ w \in L^{\infty}(0,T;Y) \colon\forall f \in Y' \\ & t \mapsto\bigl(f,w(t)\bigr) \text{ is continuous on } [0, T]\bigr\} , \end{aligned}$$

denotes the space of weakly continuous functions with values in Y.

The following lemma was stated and proven in [24] (Chap. 8.4, p. 275).

Lemma 3

Let X, Y be Banach spaces, XY with continuous injection, X reflexive. Then

$$L^{\infty}(0, T; X) \cap C_w(0, T; Y) = C_w(0, T; X). $$

Proof of Theorem 5

This proof is an adaption of standard strategies to the situation at hand (cf. Sect. 8.4 in [24] and Sect. 2.4 in [36]). Using Lemma 3 with X=V, Y=H, we conclude from (3.7a), (3.7c) that \(\hat{u} \in C_{w}([0, T]; V)\). Similarly, (3.7a) and (3.7d) imply \(\hat{u}_{t} \in C_{w}([0, T]; H)\).

Next, we take the scalar cut-off function \(O_{I} \in C^{\infty}(\mathbb {R})\) such that it equals one on some interval I⋐[0,T], and zero on \(\mathbb{R} \setminus[0, T]\). Then the functions \(O_{I} \hat{u} : \mathbb{R} \rightarrow V\) and \(O_{I} \zeta_{1},O_{I} \zeta_{2} : \mathbb{R} \rightarrow\mathbb{R}^{n}\) are compactly supported. Let \(\eta^{\epsilon} : \mathbb{R} \rightarrow\mathbb{R}\) be a standard mollifier in time. Then we define

$$\begin{aligned} \hat{u}^{\epsilon} :=& \eta^{\epsilon} \ast O_{I} \hat{u} \in C^{\infty}_c(\mathbb{R}, V), \\ \zeta_1^{\epsilon} :=& \eta^{\epsilon} \ast O_{I} \zeta_1 \in C^{\infty}_c\bigl( \mathbb{R}, \mathbb{R}^n\bigr), \\ \zeta_2^{\epsilon} :=& \eta^{\epsilon} \ast O_{I} \zeta_2 \in C^{\infty}_c\bigl( \mathbb{R}, \mathbb{R}^n\bigr). \end{aligned}$$

Now \(\zeta_{1}^{\epsilon}\) and \(\zeta_{2}^{\epsilon}\) converge uniformly on I to ζ 1 and ζ 2, respectively. Moreover, \(\hat{u}^{\epsilon}\) converges to \(\hat{u}\) in V, and \(\hat {u}^{\epsilon}_{t}\) to \(\hat{u}_{t}\) in H a.e. on I. Then, \(\hat{E}(t;\hat{u}^{\epsilon},\zeta_{1}^{\epsilon}, \zeta _{2}^{\epsilon})\) converges to \(\hat{E}(t;\hat{u},\zeta_{1}, \zeta_{2})\) a.e. on I as well. Since \(\hat{u}^{\epsilon}, \zeta_{1}^{\epsilon}, \zeta_{2}^{\epsilon}\) are smooth, a straightforward calculation on I yields

$$\begin{aligned} \frac{d}{dt} \hat{E}\bigl(t;\hat{u}^{\epsilon}, \zeta_1^{\epsilon}, \zeta_2^{\epsilon}\bigr) = & F\bigl(t;\hat{u}^{\epsilon},\zeta_1^{\epsilon}, \zeta_2^{\epsilon}\bigr), \end{aligned}$$
(A.12)

with F defined in (A.4). Passing to the limit in (A.12) as ϵ→0

$$\begin{aligned} \frac{d}{dt} \hat{E}(t; \hat{u}, \zeta_1, \zeta_2) = & F(t;\hat{u},\zeta_1, \zeta_2) \end{aligned}$$
(A.13)

holds in the sense of distributions on I. Since I was arbitrary, (A.13) holds on all compact subintervals of (0,T). Now \(t \mapsto\hat{E}(t; \hat{u}, \zeta_{1}, \zeta_{2})\) is an integral of an L 1-function (note that the input functions of F satisfy: \(^{1}\hat{u}_{t}, ^{2}\hat{u}_{t} \in L^{2}(0, T)\)), so it is absolutely continuous.

For a fixed t, let lim n→+∞ t n =t and let the sequence χ n be defined by

$$\begin{aligned} \chi_n := & \frac{1}{2} \bigl\| \hat{u}(t) - \hat{u}(t_n)\bigr\| ^2_V + \frac{1}{2} \bigl\| \hat{u}_t(t) - \hat{u}_t(t_n) \bigr\| ^2_H \\ &{} + \frac{k_1}{2} \bigl(^1\hat{u}(t)-\,^1 \hat{u}(t_n)\bigr)^2 + \frac{k_2}{2} \bigl(^2\hat{u}(t)-\,^2\hat{u}(t_n) \bigr)^2 \\ &{} + \frac{1}{2} \bigl(\zeta_{1}(t)-\zeta_{1}(t_n) \bigr)^{\top} P_1 \bigl(\zeta_{1}(t) - \zeta_{1}(t_n)\bigr) \\ &{} + \frac{1}{2} \bigl(\zeta_{2}(t)-\zeta_{2}(t_n) \bigr)^{\top} P_2 \bigl(\zeta_{2}(t) - \zeta_{2}(t_n)\bigr). \end{aligned}$$

Then

$$\begin{aligned} \chi_n = & \hat{E}(t;\hat{u}, \zeta_1, \zeta_2) + \hat{E}(t_n;\hat{u}, \zeta_1, \zeta_2) - \bigl(\hat{u}(t), \hat{u}(t_n) \bigr)_V - \bigl(\hat{u}_t(t), \hat{u}_t(t_n) \bigr)_H \\ &{} - k_1 \,^1\hat{u}(t) ^1 \hat{u}(t_n) - k_2 \,^2\hat{u}(t) ^2\hat{u}(t_n) - \zeta_{1}(t)^{\top} P_1 \zeta_{1}(t_n) - \zeta_{2}(t) ^{\top} P_2 \zeta_{2}(t_n). \end{aligned}$$

Due to the t-continuity of the energy function, weak continuity of \(\hat{u}, \hat{u}_{t}\), and continuity of ζ 1,ζ 2, it follows

$$\lim_{n \rightarrow+\infty}{\chi_n} = 0. $$

Finally, it follows that

$$\begin{aligned} \lim_{n \rightarrow\infty}{ \bigl\| \hat{u}_t(t) - \hat{u}_t(t_n) \bigr\| ^2_H} = &0 , \\ \lim_{n \rightarrow\infty}{ \bigl\| \hat{u}(t) - \hat{u}(t_n) \bigr\| ^2_V} = &0, \end{aligned}$$

which proves the theorem. □

Appendix B

Proof of Theorem 8

First we obtain from (3.21) and (3.22) (written in the style of (3.3)):

$$\begin{aligned} & \frac{u^{n+1} - u^{n}}{\Delta t} = \frac{v^{n+1} + v^{n}}{2}, \end{aligned}$$
(B.1)
$$\begin{aligned} & \int^{L}_{0} {\mu\frac{v^{n+1} - v^{n}}{\Delta t} w_h \,dx} + \int^{L}_{0}{\varLambda \frac{u^{n+1}_{xx} + u^{n}_{xx}}{2} (w_{h})_{xx} \,dx} \\ &\quad {} + M \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} w_h(L) + J \frac {v^{n+1}_{x} (L) - v^{n}_{x} (L)}{\Delta t} (w_h)_{x}(L) \\ &\quad {} + k_1 \frac{u^{n+1}_x(L) + u^{n}_x(L) }{2} (w_h)_x(L) + k_2 \frac{u^{n+1}(L) + u^{n}(L) }{2} w_h(L) \\ &\quad {} + d_1 \frac{v^{n+1}_x(L) + v^{n}_x(L) }{2} (w_h)_x(L) + d_2 \frac{v^{n+1}(L) + v^{n}(L) }{2} w_h(L) \\ &\quad {} + c_1 \cdot\frac{\zeta_1^{n+1} + \zeta_1^{n}}{2} (w_h)_x(L) + c_2 \cdot\frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} w_h(L) = 0, \quad \forall w_h \in W_h. \end{aligned}$$
(B.2)

Next we multiply (B.1) by μ(v n+1v n), and integrate over [0,L] to obtain

$$\frac{1}{2} \int_{0}^{L}{\mu \bigl[\bigl(v^{n+1}\bigr)^2 - \bigl(v^{n}\bigr)^2 \bigr]\,dx} = \int_{0}^{L}{\mu\frac{u^{n+1} - u^{n}}{\Delta t} \bigl(v^{n+1} - v^{n}\bigr) \,dx}, $$

and w h =u n+1 in (B.2):

$$\begin{aligned} \frac{1}{2} \int_{0}^{L}{\varLambda \bigl(u^{n+1}_{xx}\bigr)^2 \,dx} =& - \frac{1}{2} \int_{0}^{L}{\varLambda u^{n+1}_{xx} u^{n}_{xx} \,dx} - \int _{0}^{L}{\mu\frac{v^{n+1} - v^{n}}{\Delta t} u^{n+1} \,dx} \\ &{}- M \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} u^{n+1}(L) - J \frac{v^{n+1}_x(L) - v^{n}_x(L)}{\Delta t} u^{n+1}_x(L) \\ &{}- k_1 \frac{u^{n+1}_x(L) + u^{n}_x(L)}{2} u^{n+1}_x(L) - k_2 \frac{u^{n+1}(L) + u^{n}(L)}{2} u^{n+1}(L) \\ &{}-d_1 \frac{v^{n+1}_x(L) + v^{n}_x(L)}{2} u^{n+1}_x(L) - d_2 \frac{v^{n+1}(L) + v^{n}(L)}{2} u^{n+1}(L) \\ &{}- c_1 \cdot\frac{\zeta_1^{n+1} + \zeta_1^{n}}{2} u^{n+1}_x(L) - c_2 \cdot\frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} u^{n+1}(L). \end{aligned}$$

We next set w h =u n in (B.2):

$$\begin{aligned} \frac{1}{2} \int_{0}^{L}{\varLambda \bigl(u^{n}_{xx}\bigr)^2 \,dx} =& - \frac{1}{2} \int_{0}^{L}{\varLambda u^{n+1}_{xx} u^{n}_{xx} \,dx} - \int _{0}^{L}{\mu\frac{v^{n+1} - v^{n}}{\Delta t} u^{n} \,dx} \\ &{}- M \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} u^{n}(L) -J \frac{v^{n+1}_x(L) - v^{n}_x(L)}{\Delta t} u^{n}_x(L) \\ &{}- k_1 \frac{u^{n+1}_x(L) + u^{n}_x(L)}{2} u^{n}_x(L) - k_2 \frac{u^{n+1}(L) + u^{n}(L)}{2} u^{n}(L) \\ &{}- d_1 \frac{v^{n+1}_x(L) + v^{n}_x(L)}{2} u^{n}_x(L) - d_2 \frac{v^{n+1}(L) + v^{n}(L)}{2} u^{n}(L) \\ &{}- c_1 \cdot\frac{\zeta_1^{n+1} + \zeta_1^{n}}{2} u^{n}_x(L) - c_2 \cdot\frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} u^{n}(L) . \end{aligned}$$

This yields for the norm of the time-discrete solution, as defined in (3.20):

$$\begin{aligned} & \bigl\| z^{n+1} \bigr\| ^2 - \bigl\| z^{n} \bigr\| ^2 \\ &\quad = M \biggl( - \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} \bigl(u^{n+1}(L) - u^{n}(L)\bigr) + \frac{v^{n+1}(L)^2 - v^{n}(L)^2}{2} \biggr) \\ &\qquad{} + J \biggl(- \frac{v^{n+1}_x(L) - v^{n}_x(L)}{\Delta t} \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) + \frac{v^{n+1}_x(L)^2 - v^{n}_x(L)^2}{2} \biggr) \\ &\qquad{} + \frac{k_1}{2} \bigl(- \bigl(u^{n+1}_x(L) + u^{n}_x(L) \bigr) \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) + u^{n+1}_x(L)^2 - u^{n}_x(L)^2 \bigr) \\ &\qquad{} + \frac{k_2}{2} \bigl( - \bigl(u^{n+1}(L) + u^{n}(L) \bigr) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) + u^{n+1}(L)^2 - u^{n}(L)^2 \bigr) \\ &\qquad{} - \frac{d_1}{2} \bigl(v^{n+1}_x(L) + v^{n}_x(L)\bigr) \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr) \\ &\qquad{} - \frac{d_2}{2} \bigl(v^{n+1}(L) + v^{n}(L)\bigr) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) \\ &\qquad{} - \frac{1}{2} c_1 \cdot\bigl(\zeta_1^{n+1} + \zeta_1^{n}\bigr) \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) + \frac{1}{2}\bigl( \zeta_1^{n+1}\bigr)^{\top} P_1 \zeta_1^{n+1} - \frac{1}{2}\bigl(\zeta_1^{n} \bigr)^{\top} P_1 \zeta_1^{n} \\ &\qquad{} - \frac{1}{2} c_2 \cdot\bigl(\zeta_2^{n+1} + \zeta_2^{n}\bigr) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) + \frac{1}{2}\bigl(\zeta_2^{n+1} \bigr)^{\top} P_2 \zeta_2^{n+1} - \frac{1}{2}\bigl(\zeta_2^{n}\bigr) ^{\top} P_2 \zeta_2^{n} . \end{aligned}$$

For the first six lines we use (3.21), and for the rest \(c_{j}=P_{j}b_{j}+q_{j}\tilde{\delta}_{j}\) (cf. (1.7)) to obtain:

$$\begin{aligned} \bigl\| z^{n+1} \bigr\| ^2 & = \bigl\| z^{n} \bigr\| ^2 - \frac{d_1}{\Delta t} \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr)^2 - \frac{d_2}{\Delta t}\bigl(u^{n+1}(L) - u^{n}(L)\bigr)^2 \\ &\quad {} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )^{\top}}{2} (P_1 b_1 + q_1 \tilde{\delta}_1) \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) \\ &\quad {} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )^{\top}}{2} (P_2 b_2 + q_2 \tilde{\delta}_2) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) \\ &\quad {} + \frac{1}{2} \bigl(\zeta_1^{n+1} \bigr)^{\top} P_1 \zeta_1^{n+1} - \frac{1}{2} \bigl(\zeta_1^{n}\bigr)^{\top} P_1 \zeta_1^{n} + \frac{1}{2} \bigl( \zeta_2^{n+1}\bigr)^{\top} P_2 \zeta_2^{n+1} - \frac{1}{2} \bigl(\zeta_2^{n} \bigr)^{\top} P_2 \zeta_2^{n} . \end{aligned}$$
(B.3)

For the second and the third line of (B.3) we now use (3.21), (3.23), and (3.24) from the Crank-Nicholson scheme:

$$\begin{aligned} \bigl\| z^{n+1} \bigr\| ^2 = & \bigl\| z^{n} \bigr\| ^2 - \frac{d_1}{\Delta t} \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr)^2 - \frac{d_2}{\Delta t}\bigl(u^{n+1}(L) - u^{n}(L)\bigr)^2 \\ &{} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )^{\top}}{2} P_1 \biggl(\zeta_1^{n+1} - \zeta_1^{n} - \Delta t \; A_1 \frac{\zeta_1^n + \zeta_1^{n+1}}{2} \biggr) \\ &{} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )}{2} \cdot q_1 \tilde{\delta}_1 \bigl(u^{n+1}_x(L) - u^{n}_x(L) \bigr) \\ &{} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} ) ^{\top}}{2} P_2 \biggl(\zeta_2^{n+1} - \zeta_2^{n} - \Delta t \; A_2 \frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} \biggr) \\ &{} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )}{2} \cdot q_2 \tilde{\delta}_2 \bigl(u^{n+1}(L) - u^{n}(L)\bigr) \\ &{} + \frac{1}{2} \bigl(\zeta_1^{n+1} \bigr)^ {\top} P_1 \zeta_1^{n+1} - \frac{1}{2} \bigl(\zeta_1^{n}\bigr)^{\top} P_1 \zeta_1^{n} + \frac{1}{2} \bigl( \zeta_2^{n+1}\bigr)^{\top} P_2 \zeta_2^{n+1} - \frac{1}{2} \bigl(\zeta_2^{n} \bigr)^{\top} P_2 \zeta_2^{n}. \end{aligned}$$

Since P j , j=1,2 are symmetric matrices, this yields

$$\begin{aligned} \bigl\| z^{n+1} \bigr\| ^2 = & \bigl\| z^{n} \bigr\| ^2 - \frac{d_1}{\Delta t} \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr)^2 - \frac{d_2}{\Delta t}\bigl(u^{n+1}(L) - u^{n}(L)\bigr)^2 \\ &{} + \Delta t\frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )^{\top}}{2} P_1 A_1 \frac{\zeta_1^n + \zeta_1^{n+1}}{2} \\ &{} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )}{2} \cdot q_1 \tilde{\delta}_1 \bigl(u^{n+1}_x(L) - u^{n}_x(L) \bigr) \\ &{} + \Delta t \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )^{\top}}{2} P_2 A_2 \frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} \\ &{} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )}{2} \cdot q_2 \tilde{\delta}_2 \bigl(u^{n+1}(L) - u^{n}(L)\bigr) , \end{aligned}$$

which is the claimed result (by using (1.7)). □

Proof of Theorem 9

Let k∈{0,1,…,S} be arbitrary. Taylor’s Theorem yields ∀x∈[0,L]:

$$\begin{aligned} \frac{\breve{u}(t_{k+1},x)-\breve {u}(t_{k},x)}{\Delta t} = & \frac{\breve{u}_{t}(t_{k+1},x) + \breve{u}_{t}(t_{k},x)}{2} + \Delta t \, T^k_1(x), \end{aligned}$$
(B.4)

where

$$\begin{aligned} T^k_1 (x) = & \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{ \frac{\breve{u}_{ttt}(t, x)}{2 ( \Delta t )^2} (t_{k+1} - t)^2 \;dt} + \int _{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{\breve{u}_{ttt}(t, x)}{2 ( \Delta t )^2} (t_{k} - t)^2 \;dt} \\ &{} - \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{\frac{\breve{u}_{ttt}(t, x)}{2 \Delta t} (t_{k+1} - t) \;dt} + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{\breve{u}_{ttt}(t, x)}{2 \Delta t} (t_{k} - t)\;dt}. \end{aligned}$$

From (B.4), we obtain

$$\begin{aligned} \frac{\epsilon^{k+1} - \epsilon^{k}}{\Delta t} + \Delta t \, T_1^k = \frac{\varPhi^{k+1} + \varPhi^{k}}{2}. \end{aligned}$$
(B.5)

Multiplying (B.5) by μ(Φ k+1Φ k) and integrating over [0,L] yields:

$$\begin{aligned} & \int_0^L{ \mu \frac{\epsilon^{k+1} - \epsilon^{k}}{\Delta t} \bigl(\varPhi^{k+1} - \varPhi^{k} \bigr) \;dx} \\ &\quad = \frac{1}{2} \int_0^L{ \mu\bigl( \varPhi^{k+1} \bigr)^2 \, dx} - \frac{1}{2} \int _0^L{ \mu\bigl(\varPhi^{k} \bigr)^2 \, dx}- \Delta t \int_0^L{ \mu T_1^k \bigl(\varPhi^{k+1} - \varPhi^{k} \bigr)\;dx }. \end{aligned}$$
(B.6)

Furthermore, from (3.3) with \(t = t_{k + \frac{1}{2}}\) and Taylor’s Theorem, we get \(\forall w \in\tilde{H}^{2}_{0}(0, L)\):

$$\begin{aligned} &\int^{L}_{0} {\mu \frac{u_t(t_{k+1},x) - u_t(t_{k},x)}{\Delta t} w \,dx} + \int^{L}_{0}{ \varLambda\frac{u_{xx}(t_{k+1},x) + u_{xx}(t_{k},x)}{2} w_{xx} \,dx} \\ &\quad {}+ M \frac{u_t(t_{k+1}, L) - u_t(t_{k}, L)}{\Delta t} w(L) + J \frac {u_{tx}(t_{k+1}, L) - u_{tx}(t_{k}, L)}{\Delta t} w_{x}(L) \\ &\quad {}+ k_1 \frac{u_{x}(t_{k+1}, L) + u_{x}(t_{k}, L) }{2} w_x(L) + k_2 \frac{u(t_{k+1}, L) + u(t_{k}, L) }{2} w(L) \\ &\quad {} + d_1 \frac{u_{tx}(t_{k+1}, L) + u_{tx}(t_{k}, L)}{2} w_x(L) + d_2 \frac{u_{t}(t_{k+1}, L) + u_{t}(t_{k}, L) }{2} w(L) \\ &\quad {} + c_1 \cdot\frac{\zeta_1(t_{k+1}) + \zeta_1(t_k)}{2} w_x(L) + c_2 \cdot\frac{\zeta_2(t_{k+1}) + \zeta_2(t_k)}{2} w(L) = \Delta t \, T^k_2 (w), \end{aligned}$$
(B.7)

with the functional \(T^{k}_{2} \colon\tilde{H}^{2}_{0}(0, L) \rightarrow \mathbb{R}\) defined as

$$\begin{aligned} T^k_2(w) &=\int^{L}_{0} {\mu\biggl( \int _{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{tttt}(t,x)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttt}(t,x)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \biggr) w \, dx} \\ &\quad {} + \int^{L}_{0}{\varLambda\biggl( \int _{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int_{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_{xx} \,dx} \\ &\quad {} + M \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{tttt}(t,L)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttt}(t,L)}{2 (\Delta t)^2} ( t_{k} - t )^2 \,dt } \biggr) w(L) \\ &\quad {} + J \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{ttttx}(t,L)}{2 (\Delta t)^2} ( t_{k+1} - t )^2 \,dt } + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttttx}(t,L)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \biggr) w_x(L) \\ &\quad {} + k_1 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttx}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttx}(t,L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_x(L) \\ &\quad {} + k_2 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{tt}(t,L)}{2 \Delta t} ( t_{k+1} - t ) \,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tt}(t,L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w(L) \\ &\quad {} + d_1 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{tttx}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttx}(t,L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_x(L) \\ &\quad {} + d_2 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttt}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttt}(t,L)}{2 \Delta t} ( t_{k} - t ) \,dt } \biggr) w(L) \\ &\quad {} + c_1 \cdot\biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_x(L) \\ &\quad {} + c_2 \cdot\biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w(L). \end{aligned}$$
(B.8)

Now, from (3.22) and (B.7) follows ∀w h W h :

$$\begin{aligned} & \int^{L}_{0} {\mu\frac{\varPhi^{k+1}- \varPhi^{k}}{\Delta t} w_h \,dx} + \int^{L}_{0}{\varLambda \frac{\epsilon_{xx}^{k+1} + \epsilon_{xx}^k}{2} (w_h)_{xx} \,dx} \\ &\qquad {}+ M \frac{\varPhi^{k+1}(L) - \varPhi^{k}(L)}{\Delta t} (w_h) (L) + J \frac{\varPhi^{k+1}_x(L) - \varPhi^{k}_x(L)}{\Delta t} (w_h)_{x}(L) \\ &\qquad {}+ k_1 \frac{\epsilon^{k+1}_x(L) + \epsilon^{k}_x(L)}{2} (w_h)_x(L) + k_2 \frac{\epsilon^{k+1}(L) + \epsilon^{k}(L) }{2} w_h(L) \\ &\qquad {}+ d_1 \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} (w_h)_x(L) + d_2 \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} w_h(L) \\ &\qquad {}+ c_1 \cdot\frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^k}{2} (w_h)_x(L) + c_2 \cdot\frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^k}{2} w_h(L) \\ &\quad = -\Delta t \, T^k_2 (w_h) + G^{k}_1(w_h), \end{aligned}$$
(B.9)

where the functional \(G^{k}_{1}(w_{h})\) is given by

$$\begin{aligned} G^{k}_1(w_h) &:= \int^{L}_{0} {\mu \frac{u^e_t(t_{k+1},x) - u^e_t(t_{k},x)}{\Delta t} w_h \,dx} \\ &\hphantom{:=\,}{}+ M \frac{u^e_t(t_{k+1}, L) - u^e_t(t_{k}, L)}{\Delta t} w_h(L) + J \frac{u^e_{tx}(t_{k+1}, L) - u^e_{tx}(t_{k}, L)}{\Delta t} (w_h)_{x}(L) \\ &\hphantom{:=\,}{}+ d_1 \frac{u^e_{tx}(t_{k+1}, L) + u^e_{tx}(t_{k}, L)}{2} (w_h)_x(L) + d_2 \frac{u^e_{t}(t_{k+1}, L) + u^e_{t}(t_{k}, L) }{2} w_h(L). \end{aligned}$$
(B.10)

A Taylor expansion of ζ j about \(t_{k+\frac{1}{2}}\) yields with (3.5):

$$ \begin{aligned} & \frac{\zeta_1(t_{k+1}) - \zeta_1(t_{k})}{\Delta t} - A_1 \frac{\zeta _1(t_{k+1}) + \zeta_1(t_{k})}{2} - b_1 \frac{u_{tx}(t_{k+1}, L) + u_{tx}(t_{k}, L)}{2} = \Delta t \, T_3^k, \\ & \frac{\zeta_2(t_{k+1}) - \zeta_2(t_{k})}{\Delta t} - A_2 \frac{\zeta _2(t_{k+1}) + \zeta_2(t_{k})}{2} - b_2 \frac{u_{t}(t_{k+1}, L) + u_{t}(t_{k}, L)}{2} = \Delta t \, T_4^k , \end{aligned} $$
(B.11)

with

$$\begin{aligned} T_3^k = & \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_1)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int _{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{(\zeta_1)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \\ &{} - A_1 \biggl( \int_{t_{k + \frac{1}{2}}}^{t_{k +1 }}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) \\ &{} - b_1 \biggl( \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{ \frac{u_{tttx}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttx}(t, L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr), \\ T_4^k = & \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_2)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int _{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{(\zeta_2)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \\ &{} - A_2 \biggl( \int_{t_{k+ \frac{1}{2}}}^{t_{k+1 }}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) \\ &{} - b_2 \biggl( \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttt}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttt}(t, L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr). \end{aligned}$$

Using (3.23), (3.24), and (B.11), we get

$$ \begin{aligned} & \frac{\zeta^{k+1}_{e,1} - \zeta^{k}_{e,1}}{\Delta t} - A_1 \frac{\zeta ^{k+1}_{e,1} + \zeta^{k}_{e,1}}{2} - b_1 \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} = -\Delta t \, T_3^k - G^{k}_2, \\ & \frac{\zeta^{k+1}_{e,2} - \zeta^{k}_{e,2}}{\Delta t} - A_2 \frac{\zeta ^{k+1}_{e,2} + \zeta^{k}_{e,2}}{2} - b_2 \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} = -\Delta t \, T_4^k - G^{k}_3, \end{aligned} $$
(B.12)

with

$$\begin{aligned} G_2^k = & b_1 \frac{u^e_{tx}(t_{k+1}, L) + u^e_{tx}(t_{k}, L)}{2}, \\ G_3^k = & b_2 \frac{u^e_{t}(t_{k+1}, L) + u^e_{t}(t_{k}, L)}{2}. \end{aligned}$$

In (B.9) we now take \(w_{h} := \Delta t \frac{\varPhi ^{k+1} + \varPhi^{k}}{2} \in W_{h}\), due to (B.5). Using (B.6) and (B.12), yields:

$$\begin{aligned} \bigl\| z^{k+1}_e \bigr\| ^2 - \bigl\| z^{k}_e \bigr\| ^2 = & - (\Delta t)^2 \frac{1}{2} \int_{0}^{L}{ \varLambda\bigl( \epsilon^{k+1}_{xx} + \epsilon^{k}_{xx} \bigr) \bigl(T^k_1\bigr)_{xx} \;dx} + \frac{\Delta t}{2} G^k_1\bigl(\varPhi^{k+1} + \varPhi^{k}\bigr) \\ &{}- (\Delta t)^2 \biggl( k_1 \frac{\epsilon_x^{k+1}(L) + \epsilon_x^{k}(L)}{2} \bigl(T_1^k\bigr)_x(L) + k_2 \frac{\epsilon^{k+1}(L) + \epsilon^{k}(L)}{2} T_1^k(L) \biggr) \\ &{} - \frac{\Delta t}{2} \biggl( q_1 \frac{\zeta^{k+1}_{e,1} + \zeta ^{k}_{e,1}}{2} + \tilde{ \delta}_1 \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} \biggr)^2 \\ &{} - \Delta t \delta_1 \biggl( \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} \biggr)^2 - \Delta t \frac{\epsilon_1}{2} \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \cdot P_1 \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \\ &{} - P_1 \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_3 + \Delta t \, G^k_2 \bigr) \\ &{} - \frac{\Delta t}{2} \biggl( q_2 \frac{\zeta^{k+1}_{e,2} + \zeta ^{k}_{e,2}}{2} + \tilde{ \delta}_2 \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} \biggr)^2 \\ &{} - \Delta t \delta_2 \biggl( \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} \biggr)^2 - \Delta t \frac{\epsilon_2}{2} \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \cdot P_2 \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \\ &{} - P_2 \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_4 + \Delta t \, G^k_3 \bigr) \\ &{}- \frac{1}{2} (\Delta t)^2 T^k_2 \bigl(\varPhi^{k+1} + \varPhi^{k}\bigr). \end{aligned}$$

Therefore,

$$\begin{aligned} \bigl\| z^{k+1}_e \bigr\| ^2 - \bigl\| z^{k}_e \bigr\| ^2 \le& - (\Delta t)^2 \frac{1}{2} \int_{0}^{L}{ \varLambda\bigl( \epsilon^{k+1}_{xx} + \epsilon^{k}_{xx} \bigr) \bigl(T^k_1\bigr)_{xx} \;dx} + \frac{\Delta t}{2} G^k_1\bigl(\varPhi^{k+1} + \varPhi^{k}\bigr) \\ &{}- (\Delta t)^2 \biggl( k_1 \frac{\epsilon_x^{k+1}(L) + \epsilon_x^{k}(L)}{2} \bigl(T_1^k\bigr)_x(L) + k_2 \frac{\epsilon^{k+1}(L) + \epsilon^{k}(L)}{2} T_1^k(L) \biggr) \\ &{} - P_1 \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_3 + \Delta t \, G^k_2 \bigr) \\ &{} - P_2 \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_4 + \Delta t \, G^k_3 \bigr) \\ &{}- \frac{1}{2} (\Delta t)^2 T^k_2 \bigl(\varPhi^{k+1} + \varPhi^{k}\bigr). \end{aligned}$$
(B.13)

Next, from (B.10) follows:

$$\begin{aligned} \bigl|G^{k}_1\bigl(\varPhi^{k+1} + \varPhi^k\bigr)\bigr| \le& C \biggl( \biggl\| \frac{u^e_t(t_{k+1},x) - u^e_t(t_{k},x)}{\Delta t} \biggr\| _{L^2}^2 + \bigl\| \varPhi^{k+1} + \varPhi^k \bigr\| _{L^2}^2 \\ &{} + \biggl| \frac{u^e_t(t_{k+1}, L) - u^e_t(t_{k}, L)}{\Delta t}\biggr|^2 + \biggl| \frac {u^e_{tx}(t_{k+1}, L) - u^e_{tx}(t_{k}, L)}{\Delta t}\biggr|^2 \\ &{}+ \biggl|\frac{u^e_{tx}(t_{k+1}, L) + u^e_{tx}(t_{k}, L)}{2}\biggr|^2 + \biggl|\frac {u^e_{t}(t_{k+1}, L) + u^e_{t}(t_{k}, L) }{2}\biggr|^2 \\ &{}+ \bigl| \varPhi^{k+1}(L) + \varPhi^k(L)\bigr|^2 + \bigl| \varPhi_x^{k+1}(L) + \varPhi_x^{k}(L)\bigr|^2 \biggr) \end{aligned}$$
(B.14)
$$\begin{aligned} \le& C \biggl( \bigl\| \varPhi^{k+1} + \varPhi^k \bigr\| _{L^2}^2 + \bigl| \varPhi^{k+1}(L) + \varPhi^k(L)\bigr|^2 + \bigl| \varPhi_x^{k+1}(L) + \varPhi_x^{k}(L)\bigr|^2 \\ &{} + \frac{1}{\Delta t} \int_{t_k}^{t_k+1}\bigl\| u^e_{tt}(t) \bigr\| ^2_{L^2} + \bigl|u^e_{tt}(t,L)\bigr|^2 \\ &{}+\bigl|u^e_{ttx}(t,L)\bigr|^2 \, dt + \bigl\| u^e_t \bigr\| _{C([t_{k},t_{k+1}]; H^2)}^2 \biggr). \end{aligned}$$
(B.15)

It can easily be seen that

$$\begin{aligned} \bigl\| T^k_1\bigr\| ^2_{H^2} \le&\Delta t \int_{t_k}^{t_{k+1}}{\bigl\| \breve{u}_{ttt}(t) \bigr\| ^2_{H^2} \, dt} \le C \Delta t \int _{t_k}^{t_{k+1}}{\bigl\| u_{ttt}(t) \bigr\| ^2_{H^2} \, dt}, \end{aligned}$$
(B.16)
$$\begin{aligned} \bigl\| T^k_3\bigr\| ^2 \le& C \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| u_{ttt}(t) \bigr\| ^2_{H^2} + \bigl\| (\zeta_1)_{tt} \bigr\| ^2 + \bigl\| (\zeta_1)_{ttt}\bigr\| ^2 \, dt}, \end{aligned}$$
(B.17)
$$\begin{aligned} \bigl\| T^k_4\bigr\| ^2 \le& C \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| u_{ttt}(t) \bigr\| ^2_{H^1} + \bigl\| (\zeta_2)_{tt} \bigr\| ^2 + \bigl\| (\zeta_2)_{ttt}\bigr\| ^2 \, dt}, \end{aligned}$$
(B.18)

and

$$\begin{aligned} T^k_2\bigl(\varPhi^k\bigr) \le& C \biggl( \bigl\| \varPhi^k \bigr\| ^2_{L^2} + \bigl| \varPhi^k(L) \bigr|^2 + \bigl| \varPhi^k_x(L) \bigr|^2 \\ &{} + \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| u_{tt} (t)\bigr\| _{H^4}^2 + \bigl\| u_{ttt}(t) \bigr\| _{H^2}^2 + \bigl\| u_{tttt}(t) \bigr\| _{H^2}^2 \, dt} \\ &{} + \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| ( \zeta_1)_{tt} (t)\bigr\| ^2 + \bigl\| (\zeta_2)_{tt} (t)\bigr\| ^2 \, dt} \biggr). \end{aligned}$$
(B.19)

For the above estimate, we rewrote the second term of \(T^{k}_{2}(\varPhi ^{k})\) in (B.8) as:

$$\begin{aligned} &\int^{L}_{0}{ \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) \varPhi^k_{xx} \,dx} \\ &\quad = \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{t_{k+1} - t}{2 \Delta t} \biggl( u_{ttxx}(t,L) \varPhi^k_x(L) - u_{ttxxx}(t,L) \varPhi^k(L) + \int_{0}^{L}{u_{ttxxxx}(t,x) \varPhi^k \, dx} \biggr) \,dt} \\ &\qquad {}- \int_{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{t_{k} - t}{2 \Delta t} \biggl( u_{ttxx}(t,L) \varPhi^k_x(L) - u_{ttxxx}(t,L) \varPhi^k(L) + \int_{0}^{L}{u_{ttxxxx}(t,x) \varPhi^k \, dx} \biggr) \,dt}, \end{aligned}$$

using \(\varPhi^{k}(0) = \varPhi^{k}_{x}(0) = 0\), and then the Sobolev embedding Theorem. From (B.13)–(B.19), now follows:

$$\begin{aligned} \bigl\| z^{k+1}_e \bigr\| ^2 - \bigl\| z^{k}_e \bigr\| ^2 & \le C \Biggl( \Delta t \bigl( \bigl\| z^{k+1}_e \bigr\| ^2 + \bigl\| z^{k}_e \bigr\| ^2\bigr) + \Delta t \bigl\| u^e_t \bigr\| _{C([t_{k},t_{k+1}]; H^2)}^2 \\ &\quad {}+ \int_{t_k}^{t_{k+1}}{\bigl\| u^e_{tt}(t) \bigr\| ^2_{L^2} + \bigl|u^e_{tt}(t,L)\bigr|^2 +\bigl|u^e_{ttx}(t,L)\bigr|^2 \, dt} \\ &\quad {} + (\Delta t)^4 \sum_{i=1}^{2}{ \int_{t_k}^{t_{k+1}}{ \bigl\| (\zeta_i)_{tt} \bigr\| ^2 + \bigl\| (\zeta_i)_{ttt}\bigr\| ^2 \, dt}} \\ &\quad {} + (\Delta t)^4 \int_{t_k}^{t_{k+1}}{ \bigl\| u_{tt} (t)\bigr\| _{H^4}^2 + \bigl\| u_{ttt}(t) \bigr\| _{H^2}^2 + \bigl\| u_{tttt}(t) \bigr\| _{H^2}^2 \, dt} \Biggr). \end{aligned}$$
(B.20)

Let now n∈{1,…,S}. Assuming \(\Delta t \le\frac{1}{2 C}\) (with C from (B.20)), and summing (B.20) over k∈{0,…,n}, gives:

$$\begin{aligned} \frac{1}{2} \bigl\| z^{n+1}_e \bigr\| ^2 & \le \frac{3}{2} \bigl\| z^{0}_e \bigr\| ^2 + C \Biggl( \Delta t \sum_{k=1}^{n}{ \bigl\| z^{k}_e \bigr\| ^2} + \bigl\| u^e_t \bigr\| _{C([0, T]; H^2)}^2 + \bigl\| u^e_{tt} \bigr\| ^2_{L^2(0,T; H^2)} \\ &\quad {} + (\Delta t)^4 \Biggl[ \sum_{i = 1}^2{ \bigl\| (\zeta_i)_{tt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2 + \bigl\| ( \zeta_i)_{ttt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2} \\ &\quad {} + \bigl\| u_{tt} (t) \bigr\| _{L^2(0, T; H^4)}^2 + \bigl\| u_{ttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 + \bigl\| u_{tttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 \Biggr] \Biggr). \end{aligned}$$
(B.21)

Finally, using the discrete-in-time Gronwall inequality and (B.4), we obtain:

$$\begin{aligned} \bigl\| z^{n+1}_e \bigr\| ^2 & \le C \Biggl( \bigl\| z^{0}_e \bigr\| ^2 + h^4 \bigl( \| u_t \|_{C([0, T]; H^4)}^2 +\| u_{tt} \|^2_{L^2(0,T; H^4)} \bigr) \\ &\quad {} + (\Delta t)^4 \Biggl[ \sum_{i = 1}^2{ \bigl\| (\zeta_i)_{tt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2 + \bigl\| ( \zeta_i)_{ttt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2} \\ &\quad {} + \bigl\| u_{tt} (t) \bigr\| _{L^2(0, T; H^4)}^2 + \bigl\| u_{ttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 + \bigl\| u_{tttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 \Biggr] \Biggr). \end{aligned}$$
(B.22)

The result now follows from (B.22), (3.25), and the triangle inequality. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miletić, M., Arnold, A. A Piezoelectric Euler-Bernoulli Beam with Dynamic Boundary Control: Stability and Dissipative FEM. Acta Appl Math 138, 241–277 (2015). https://doi.org/10.1007/s10440-014-9965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9965-1

Keywords

Mathematics Subject Classification (2010)