Appendix A
The following proof is an adaption of the proof of Theorem 8.1 in [24], for the system studied here. It is included for the sake of completeness.
Proof of Theorem 4
(a)–existence: Let \(\{ \hat{w}_{k} \}_{k=1}^{\infty}\) be a sequence of functions that is an orthonormal basis for H, and an orthogonal basis for V. We introduce \(W_{m} := \mathit{span} \{ \hat {w}_{1}, \dots, \hat{w}_{m}\}, \forall m \in\mathbb{N}\). Furthermore, let sequences \(\hat{u}_{m0}, \hat{v}_{m0} \in W_{m}\) be given so that
$$ \begin{aligned} \hat{u}_{m0} &\rightarrow \hat{u}_0 \quad \text{in } V, \\ \hat{v}_{m0} &\rightarrow\hat{v}_0 \quad \text{in } H. \end{aligned} $$
(A.1)
For a fixed \(m \in\mathbb{N}\) we consider the Galerkin approximation
$$\hat{u}_m(t)= \bigl((u_m)_x(L),u_m(L), u_m\bigr) = \sum_{k=1}^{m}{d_m^k(t) \hat{w}_k}, $$
with \(d_{m}^{k}(t) \in\mathbb{R}\), which solves the formulation (3.3) for all \(\hat{w} \in W_{m}\):
$$ \bigl((\hat{u}_m)_{tt}, \hat{w} \bigr)_H + a(\hat{u}_m, \hat{w}) + b\bigl(( \hat{u}_m)_t, \hat{w}\bigr) + e_1( \zeta_{1,m}, \hat{w}) + e_2(\zeta_{2,m}, \hat{w})= 0, $$
(A.2)
and ζ
1,m
,ζ
2,m
solve the ODE system
$$\begin{aligned} \begin{aligned} (\zeta_{1,m})_t(t) & = A_{1} \zeta_{1,m}(t) + b_{1} \,^1(\hat{u}_m)_{t} (t), \\ (\zeta_{2,m})_t(t) & = A_{2} \zeta_{2,m}(t) + b_{2} \,^2(\hat {u}_m)_{t} (t), \end{aligned} \end{aligned}$$
(A.3)
with the initial conditions
$$\begin{aligned} \hat{u}_m(0) = & \hat{u}_{m0} , \\ (\hat{u}_m)_t(0) = & \hat{v}_{m0} , \\ \zeta_{1,m}(0) = & \zeta_{0,1} , \\ \zeta_{2,m}(0) = & \zeta_{0,2}. \end{aligned}$$
This problem is a linear system of second order differential equations, with a unique solution satisfying \(\hat{u}_{m} \in C^{2}([0, T]; V)\) and \(\zeta_{1,m}, \zeta_{2,m} \in C^{1}([0,T];\mathbb{R}^{n})\). Next, we define an energy functional, analogous to (3.11), for the trajectory
\((\hat{u}, \zeta_{1}, \zeta_{2})\):
$$\begin{aligned} \hat{E}(t; \hat{u}, \zeta_1, \zeta_2) := & \frac{1}{2} \bigl\| \hat{u}(t) \bigr\| ^2_V + \frac{k_1}{2} \bigl(^1\hat{u}(t)\bigr)^2 + \frac{k_2}{2} \bigl(^2\hat{u}(t)\bigr)^2 + \frac{1}{2} \bigl\| \hat{u}_t(t) \bigr\| ^2_H \\ &{} + \frac{1}{2} \zeta_{1}^{\top}(t) P_1 \zeta_{1}(t) + \frac{1}{2} \zeta_{2}^{\top}(t) P_2 \zeta_{2}(t) \\ = & \bigl\| \bigl(u, u_t, \zeta_1, \zeta_2, J u_{tx}(J), M u_t(L)\bigr) \bigr\| _{\mathcal{H}}. \end{aligned}$$
Taking \(\hat{w} = (\hat{u}_{m})_{t}\) in (A.2) and using the smoothness of \(\hat{u}_{m}, \zeta_{1,m}, \zeta_{2,m}\), a straightforward calculation yields
$$\begin{aligned} \frac{d}{dt} \hat{E}(t;\hat{u}_m, \zeta_{1,m}, \zeta_{2,m}) = & - \delta_1 \bigl(^1(\hat{u}_m)_{t}\bigr)^2 - \frac{1}{2} \bigl(\zeta_{1,m} \cdot q_1 + \tilde{\delta}_1 \bigl(^1(\hat{u}_m)_{t} \bigr) \bigr)^2 \\ &{} - \delta_2 \bigl(^2(\hat{u}_m)_{t} \bigr)^2 - \frac{1}{2} \bigl(\zeta_{2,m} \cdot q_2 + \tilde{\delta}_2\bigl(^2( \hat{u}_m)_{t}\bigr) \bigr)^2 \\ &{} - \frac{\epsilon_1}{2} (\zeta_{1,m})^{\top} P_1 \zeta_{1,m}- \frac{\epsilon_2}{2} (\zeta_{2,m})^{\top} P_2 \zeta_{2,m} \\ =:& F(t;\hat{u}_m, \zeta_{1,m}, \zeta_{2,m}) \le0, \end{aligned}$$
(A.4)
which is analogous to (3.1) for the continuous solution. Hence
$$ \hat{E}(t;\hat{u}_m,\zeta_{1,m}, \zeta_{2,m}) \le\hat{E}(0;\hat{u}_m,\zeta_{0,1}, \zeta_{0,2}), \quad t \ge0, $$
which implies
$$ \begin{aligned} &\{\hat{u}_m \}_{m \in\mathbb{N}} \quad \text{is bounded in } C\bigl([0,T]; V\bigr), \\ &\bigl\{ (\hat{u}_m)_t \bigr\} _{m \in\mathbb{N}} \quad \text{is bounded in } C\bigl([0,T]; H\bigr), \\ &\{\zeta_{1,m} \}_{m \in\mathbb{N}}, \qquad \{\zeta_{2,m} \}_{m \in\mathbb{N}} \quad \text{are bounded in } C\bigl([0,T]; \mathbb{R}^n \bigr). \end{aligned} $$
(A.5)
Due to these boundedness results, it holds \(\forall\hat{w} \in V\):
$$\begin{aligned} \bigl|a\bigl(\hat{u}_m(t), \hat{w}\bigr) + b\bigl((\hat{u}_m)_t(t), \hat{w}\bigr) + e_1\bigl(\zeta_{1,m}(t), \hat{w}\bigr) + e_2\bigl(\zeta_{2,m}(t), \hat{w}\bigr)\bigr| \le& D_1 \| \hat{w} \|_{V}, \end{aligned}$$
a.e. on (0,T), with some constant D
1>0 which does not depend on m. Now, let \(m \in\mathbb{N}\) be fixed. Furthermore, let \(\hat{w} \in V\), and \(\hat{w} = \hat{w}_{1} + \hat{w}_{2}\), such that \(\hat{w}_{1} \in W_{m}\) and \(\hat{w}_{2}\) orthogonal to W
m
in H. Then we obtain from (A.2):
$$\begin{aligned} \bigl((\hat{u}_m)_{tt}, \hat{w}\bigr)_H = & \bigl((\hat{u}_m)_{tt}, \hat{w}_1 \bigr)_H \\ = & -a(\hat{u}_m, \hat{w}_1) - b\bigl(( \hat{u}_m)_t, \hat{w}_1\bigr) - e_1(\zeta_{1,m}, \hat{w}_1) - e_2( \zeta_{2,m}, \hat{w}_1) \\ \le& D_1 \|\hat{w}_1 \|_V \le D_1 \|\hat{w} \|_V. \end{aligned}$$
This implies that also \((\hat{u}_{m})_{tt}\) is bounded in L
2(0,T;V′). Furthermore, from (A.3) it trivially follows that \(\{(\zeta_{1,m})_{t} \}_{m \in\mathbb{N}}\) and \((\{\zeta_{2,m})_{t} \}_{m \in\mathbb{N}}\) are also bounded in \(L^{2}(0,T; \mathbb{R}^{n})\).
According to the Eberlein-S̆muljan Theorem, there exist subsequences \(\{ \hat{u}_{m_{l}}\}_{l \in\mathbb{N}}\), \(\{ \zeta_{1,m_{l}}\}_{l \in \mathbb{N}}\), \(\{ \zeta_{2,m_{l}}\}_{l \in\mathbb{N}}\), and \(\hat{u} \in L^{2}(0,T ; V)\), with \(\hat{u}_{t} \in L^{2}(0,T ; H)\), \(\hat{u}_{tt} \in L^{2}(0,T ; V')\), and \(\zeta_{1}, \zeta_{2} \in H^{1}(0,T;\mathbb{R}^{n})\) such that
$$\begin{aligned} \{\hat{u}_{m_l} \} \rightharpoonup& u \quad \text{in }L^{2}(0,T; V), \\ \bigl\{ (\hat{u}_{m_l})_t \bigr\} \rightharpoonup& u_t \quad \text{in }L^{2}(0,T; H), \\ \bigl\{ (\hat{u}_{m_l})_{tt} \bigr\} \rightharpoonup& u_{tt} \quad \text{in } L^{2}\bigl(0,T; V'\bigr), \\ \{\zeta_{1,m_l} \} \rightharpoonup& \zeta_1 \quad \text{in } L^{2}\bigl(0,T; \mathbb{R}^n\bigr), \\ \{\zeta_{2,m_l} \} \rightharpoonup& \zeta_2 \quad \text{in } L^{2}\bigl(0,T;\mathbb{R}^n\bigr), \\ \bigl\{ (\zeta_{1,m_l})_t \bigr\} \rightharpoonup& ( \zeta_1)_t \quad \text{in } L^{2}\bigl(0,T; \mathbb{R}^n\bigr), \\ \bigl\{ (\zeta_{2,m_l})_t \bigr\} \rightharpoonup& ( \zeta_2)_t \quad \text{in } L^{2}\bigl(0,T; \mathbb{R}^n\bigr). \end{aligned}$$
(A.6)
Therefore, passing to the limit in (A.2) and (A.3), we see that \(\hat{u}\) and ζ
1,ζ
2 solve (3.4) and (3.5).
(b)–additional regularity: From \(\zeta_{1}, \zeta_{2} \in H^{1}(0, T; \mathbb{R}^{n})\) follows the continuity of the controller functions, i.e. (3.7b). It is easily seen from the construction of the weak solution and (A.5) that \(\hat{u}\) satisfies (3.7a). Equation (3.7c) follows immediately due to Lemma 2, after, possibly, a modification on a set of measure zero. Equation (3.7d) follows from Lemma 2 and the ‘Duality Theorem’ (see [24], Chap. 6.2, p. 29) which states: for all θ∈(0,1), it holds
$$[X, Y]_{\theta}' = \bigl[Y', X'\bigr]_{1 - \theta}. $$
(a)–initial conditions, uniqueness: It remains to show that \(\hat{u}\), ζ
1, and ζ
2 satisfy the initial conditions. For this purpose, we integrate by parts (in time) in (3.4), with \(\hat{w} \in C^{2}([0, T]; V)\) such that \(\hat{w}(T) = 0\) and \(\hat{w}_{t}(T) = 0\):
$$\begin{aligned} & \int_{0}^{T}{ \bigl[ (\hat{u}, \hat{w}_{tt})_H + a(\hat{u}, \hat{w}) + b( \hat{u}_t, \hat{w}) + e_1(\zeta_1, \hat{w}) + e_2(\zeta_2, \hat{w}) \bigr] \, d \tau} \\ &\quad = -\bigl(\hat{u}(0), \hat{w}_t(0)\bigr)_H + {_{V'}\bigl\langle \hat{u}_t(0), \hat{w}(0)\bigr\rangle _{V}}. \end{aligned}$$
(A.7)
Similarly, for a fixed m it follows from (A.2):
$$\begin{aligned} & \int_{0}^{T}{ \bigl[ (\hat{u}_m, \hat{w}_{tt})_H + a( \hat{u}_m, \hat{w}) + b\bigl((\hat{u}_m)_t, \hat{w}\bigr) + e_1(\zeta_{1m}, \hat{w}) + e_2(\zeta_{2m}, \hat{w}) \bigr] \, d \tau} \\ &\quad = -\bigl(\hat{u}_{m0}, \hat{w}_t(0)\bigr)_H + \bigl(\hat{v}_{m0}, \hat{w}(0)\bigr)_H. \end{aligned}$$
(A.8)
Due to (A.1) and (A.6), passing to the limit in (A.8) along the convergent subsequence \(\{\hat{u}_{m_{l}}\}\) gives
$$\begin{aligned} & \int_{0}^{T}{ \bigl[ (\hat{u}, \hat{w}_{tt})_H + a(\hat{u}, \hat{w}) + b( \hat{u}_t, \hat{w}) + e_1(\zeta_1, \hat{w}) + e_2(\zeta_2, \hat{w}) \bigr] \, d \tau} \\ &\quad = -\bigl(\hat{u}_0, \hat{w}_t(0)\bigr)_H + \bigl(\hat{v}_0, \hat{w}(0)\bigr)_H. \end{aligned}$$
(A.9)
Comparing (A.7) with (A.9), implies \(\hat {u}(0) = \hat{u}_{0}\) and \(\hat{u}_{t}(0) = \hat{v}_{0}\). Analogously we obtain ζ
1(0)=ζ
0,1 and ζ
2(0)=ζ
0,2.
In order to show uniqueness, let \((\hat{u}, \zeta_{1}, \zeta_{2})\) be a solution to (3.4) and (3.5) with zero initial conditions. Let s∈(0,T) be fixed, and set
$$ \hat{U}(t):= \left \{ \begin{array}{l@{\quad}l} \int_{t}^{s}{\hat{u}(\tau) \,d\tau}, & t < s, \\ 0, & t \ge s, \end{array} \right . $$
and
$$ Z_i(t):= \int_{0}^{t}{ \zeta_i(\tau) \,d\tau}, $$
for i=1,2. Integrating (3.5) over (0,t) yields with (1.7)
$$\begin{aligned} \frac{1}{2} \frac{d}{dt}\bigl(Z_i^{\top} P_i Z_i\bigr) (t) = & - \frac{1}{2} \epsilon_i Z_i^{\top}(t) P_i Z_i(t) - \frac{1}{2} \bigl(q_i \cdot Z_i(t) + \tilde{\delta}_i \bigl(^i \hat{u}(t)\bigr)\bigr)^2 \\ &{} + (d_i - \delta_i) \bigl(^i \hat{u}(t)\bigr)^2 + Z_i(t) \cdot c_i \bigl(^i \hat{u}(t)\bigr), \end{aligned}$$
(A.10)
for 0≤t≤T, i=1,2. Integrating (3.4) with \(\hat{w} = \hat{U}\) over [0,T], and performing partial integration in time, yields
$$\begin{aligned} & \int_{0}^{s}{\bigl( \hat{u}_{t}(\tau), \hat{u}(\tau)\bigr)_{H} - a\bigl( \hat{U}_t(\tau), \hat{U}(\tau)\bigr) + b\bigl(\hat{u}(\tau), \hat{u}( \tau)\bigr) \,d\tau} \\ &\quad {} + \sum_{i = 1}^{2} \int _{0}^{s}{Z_i(\tau) \cdot c_i \bigl(^i\hat{u}(\tau)\bigr) \,d\tau}= 0. \end{aligned}$$
(A.11)
From (A.10) and (A.11) follows
$$\begin{aligned} & \int_{0}^{s}{\frac{d}{dt} \Biggl( \frac{1}{2} \bigl\| \hat{u}(\tau)\bigr\| ^2_{H} - \frac{1}{2} a\bigl(\hat{U}(\tau), \hat{U}(\tau)\bigr) + \frac{1}{2} \sum_{i=1}^2{Z_i^{\top}( \tau) P_i Z_i(\tau)} \Biggr) \,d\tau} \\ &\quad = - \sum_{i = 1}^{2} \int _{0}^{s}{ \biggl( \delta_i \bigl(^i\hat{u}(\tau)\bigr)^2 + \frac{\epsilon_i}{2} Z_i^{\top}(\tau)P_i Z_i(\tau) + \frac{1}{2} \bigl(q_i \cdot Z_i(\tau) + \tilde{\delta}_i \bigl(^i \hat{u}\bigr) (\tau) \bigr)^2 \biggr) \,d\tau}. \end{aligned}$$
Therefore,
$$\begin{aligned} \frac{1}{2} \bigl\| \hat{u}(s)\bigr\| ^2_{H} + \frac{1}{2} a\bigl(\hat{U}(0), \hat{U}(0)\bigr) + \sum _{i=1}^2{\frac{1}{2} Z_i^{\top}(s) P_i Z_i(s)} \le& 0. \end{aligned}$$
The matrices P
j
,j=1,2 are positive definite, and the bilinear form a(.,.) is coercive. Hence \(\hat{u}(s) = 0\), \(\hat{U}(0) = 0\), and Z
i
(s)=0. Since s∈(0,T) was arbitrary, \(\hat{u} \equiv0\), ζ
i
≡0, i=1,2 follows. □
Before the proof of the continuity in time of the weak solution, a definition and a lemma will be stated.
Definition 1
Let Y be a Banach space. Then
$$\begin{aligned} C_w\bigl([0, T]; Y\bigr) := & \bigl\{ w \in L^{\infty}(0,T;Y) \colon\forall f \in Y' \\ & t \mapsto\bigl(f,w(t)\bigr) \text{ is continuous on } [0, T]\bigr\} , \end{aligned}$$
denotes the space of weakly continuous functions with values in Y.
The following lemma was stated and proven in [24] (Chap. 8.4, p. 275).
Lemma 3
Let
X, Y
be Banach spaces, X⊂Y
with continuous injection, X
reflexive. Then
$$L^{\infty}(0, T; X) \cap C_w(0, T; Y) = C_w(0, T; X). $$
Proof of Theorem 5
This proof is an adaption of standard strategies to the situation at hand (cf. Sect. 8.4 in [24] and Sect. 2.4 in [36]). Using Lemma 3 with X=V, Y=H, we conclude from (3.7a), (3.7c) that \(\hat{u} \in C_{w}([0, T]; V)\). Similarly, (3.7a) and (3.7d) imply \(\hat{u}_{t} \in C_{w}([0, T]; H)\).
Next, we take the scalar cut-off function \(O_{I} \in C^{\infty}(\mathbb {R})\) such that it equals one on some interval I⋐[0,T], and zero on \(\mathbb{R} \setminus[0, T]\). Then the functions \(O_{I} \hat{u} : \mathbb{R} \rightarrow V\) and \(O_{I} \zeta_{1},O_{I} \zeta_{2} : \mathbb{R} \rightarrow\mathbb{R}^{n}\) are compactly supported. Let \(\eta^{\epsilon} : \mathbb{R} \rightarrow\mathbb{R}\) be a standard mollifier in time. Then we define
$$\begin{aligned} \hat{u}^{\epsilon} :=& \eta^{\epsilon} \ast O_{I} \hat{u} \in C^{\infty}_c(\mathbb{R}, V), \\ \zeta_1^{\epsilon} :=& \eta^{\epsilon} \ast O_{I} \zeta_1 \in C^{\infty}_c\bigl( \mathbb{R}, \mathbb{R}^n\bigr), \\ \zeta_2^{\epsilon} :=& \eta^{\epsilon} \ast O_{I} \zeta_2 \in C^{\infty}_c\bigl( \mathbb{R}, \mathbb{R}^n\bigr). \end{aligned}$$
Now \(\zeta_{1}^{\epsilon}\) and \(\zeta_{2}^{\epsilon}\) converge uniformly on I to ζ
1 and ζ
2, respectively. Moreover, \(\hat{u}^{\epsilon}\) converges to \(\hat{u}\) in V, and \(\hat {u}^{\epsilon}_{t}\) to \(\hat{u}_{t}\) in H a.e. on I. Then, \(\hat{E}(t;\hat{u}^{\epsilon},\zeta_{1}^{\epsilon}, \zeta _{2}^{\epsilon})\) converges to \(\hat{E}(t;\hat{u},\zeta_{1}, \zeta_{2})\) a.e. on I as well. Since \(\hat{u}^{\epsilon}, \zeta_{1}^{\epsilon}, \zeta_{2}^{\epsilon}\) are smooth, a straightforward calculation on I yields
$$\begin{aligned} \frac{d}{dt} \hat{E}\bigl(t;\hat{u}^{\epsilon}, \zeta_1^{\epsilon}, \zeta_2^{\epsilon}\bigr) = & F\bigl(t;\hat{u}^{\epsilon},\zeta_1^{\epsilon}, \zeta_2^{\epsilon}\bigr), \end{aligned}$$
(A.12)
with F defined in (A.4). Passing to the limit in (A.12) as ϵ→0
$$\begin{aligned} \frac{d}{dt} \hat{E}(t; \hat{u}, \zeta_1, \zeta_2) = & F(t;\hat{u},\zeta_1, \zeta_2) \end{aligned}$$
(A.13)
holds in the sense of distributions on I. Since I was arbitrary, (A.13) holds on all compact subintervals of (0,T). Now \(t \mapsto\hat{E}(t; \hat{u}, \zeta_{1}, \zeta_{2})\) is an integral of an L
1-function (note that the input functions of F satisfy: \(^{1}\hat{u}_{t}, ^{2}\hat{u}_{t} \in L^{2}(0, T)\)), so it is absolutely continuous.
For a fixed t, let lim
n→+∞
t
n
=t and let the sequence χ
n
be defined by
$$\begin{aligned} \chi_n := & \frac{1}{2} \bigl\| \hat{u}(t) - \hat{u}(t_n)\bigr\| ^2_V + \frac{1}{2} \bigl\| \hat{u}_t(t) - \hat{u}_t(t_n) \bigr\| ^2_H \\ &{} + \frac{k_1}{2} \bigl(^1\hat{u}(t)-\,^1 \hat{u}(t_n)\bigr)^2 + \frac{k_2}{2} \bigl(^2\hat{u}(t)-\,^2\hat{u}(t_n) \bigr)^2 \\ &{} + \frac{1}{2} \bigl(\zeta_{1}(t)-\zeta_{1}(t_n) \bigr)^{\top} P_1 \bigl(\zeta_{1}(t) - \zeta_{1}(t_n)\bigr) \\ &{} + \frac{1}{2} \bigl(\zeta_{2}(t)-\zeta_{2}(t_n) \bigr)^{\top} P_2 \bigl(\zeta_{2}(t) - \zeta_{2}(t_n)\bigr). \end{aligned}$$
Then
$$\begin{aligned} \chi_n = & \hat{E}(t;\hat{u}, \zeta_1, \zeta_2) + \hat{E}(t_n;\hat{u}, \zeta_1, \zeta_2) - \bigl(\hat{u}(t), \hat{u}(t_n) \bigr)_V - \bigl(\hat{u}_t(t), \hat{u}_t(t_n) \bigr)_H \\ &{} - k_1 \,^1\hat{u}(t) ^1 \hat{u}(t_n) - k_2 \,^2\hat{u}(t) ^2\hat{u}(t_n) - \zeta_{1}(t)^{\top} P_1 \zeta_{1}(t_n) - \zeta_{2}(t) ^{\top} P_2 \zeta_{2}(t_n). \end{aligned}$$
Due to the t-continuity of the energy function, weak continuity of \(\hat{u}, \hat{u}_{t}\), and continuity of ζ
1,ζ
2, it follows
$$\lim_{n \rightarrow+\infty}{\chi_n} = 0. $$
Finally, it follows that
$$\begin{aligned} \lim_{n \rightarrow\infty}{ \bigl\| \hat{u}_t(t) - \hat{u}_t(t_n) \bigr\| ^2_H} = &0 , \\ \lim_{n \rightarrow\infty}{ \bigl\| \hat{u}(t) - \hat{u}(t_n) \bigr\| ^2_V} = &0, \end{aligned}$$
which proves the theorem. □
Appendix B
Proof of Theorem 8
First we obtain from (3.21) and (3.22) (written in the style of (3.3)):
$$\begin{aligned} & \frac{u^{n+1} - u^{n}}{\Delta t} = \frac{v^{n+1} + v^{n}}{2}, \end{aligned}$$
(B.1)
$$\begin{aligned} & \int^{L}_{0} {\mu\frac{v^{n+1} - v^{n}}{\Delta t} w_h \,dx} + \int^{L}_{0}{\varLambda \frac{u^{n+1}_{xx} + u^{n}_{xx}}{2} (w_{h})_{xx} \,dx} \\ &\quad {} + M \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} w_h(L) + J \frac {v^{n+1}_{x} (L) - v^{n}_{x} (L)}{\Delta t} (w_h)_{x}(L) \\ &\quad {} + k_1 \frac{u^{n+1}_x(L) + u^{n}_x(L) }{2} (w_h)_x(L) + k_2 \frac{u^{n+1}(L) + u^{n}(L) }{2} w_h(L) \\ &\quad {} + d_1 \frac{v^{n+1}_x(L) + v^{n}_x(L) }{2} (w_h)_x(L) + d_2 \frac{v^{n+1}(L) + v^{n}(L) }{2} w_h(L) \\ &\quad {} + c_1 \cdot\frac{\zeta_1^{n+1} + \zeta_1^{n}}{2} (w_h)_x(L) + c_2 \cdot\frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} w_h(L) = 0, \quad \forall w_h \in W_h. \end{aligned}$$
(B.2)
Next we multiply (B.1) by μ(v
n+1−v
n), and integrate over [0,L] to obtain
$$\frac{1}{2} \int_{0}^{L}{\mu \bigl[\bigl(v^{n+1}\bigr)^2 - \bigl(v^{n}\bigr)^2 \bigr]\,dx} = \int_{0}^{L}{\mu\frac{u^{n+1} - u^{n}}{\Delta t} \bigl(v^{n+1} - v^{n}\bigr) \,dx}, $$
and w
h
=u
n+1 in (B.2):
$$\begin{aligned} \frac{1}{2} \int_{0}^{L}{\varLambda \bigl(u^{n+1}_{xx}\bigr)^2 \,dx} =& - \frac{1}{2} \int_{0}^{L}{\varLambda u^{n+1}_{xx} u^{n}_{xx} \,dx} - \int _{0}^{L}{\mu\frac{v^{n+1} - v^{n}}{\Delta t} u^{n+1} \,dx} \\ &{}- M \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} u^{n+1}(L) - J \frac{v^{n+1}_x(L) - v^{n}_x(L)}{\Delta t} u^{n+1}_x(L) \\ &{}- k_1 \frac{u^{n+1}_x(L) + u^{n}_x(L)}{2} u^{n+1}_x(L) - k_2 \frac{u^{n+1}(L) + u^{n}(L)}{2} u^{n+1}(L) \\ &{}-d_1 \frac{v^{n+1}_x(L) + v^{n}_x(L)}{2} u^{n+1}_x(L) - d_2 \frac{v^{n+1}(L) + v^{n}(L)}{2} u^{n+1}(L) \\ &{}- c_1 \cdot\frac{\zeta_1^{n+1} + \zeta_1^{n}}{2} u^{n+1}_x(L) - c_2 \cdot\frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} u^{n+1}(L). \end{aligned}$$
We next set w
h
=u
n in (B.2):
$$\begin{aligned} \frac{1}{2} \int_{0}^{L}{\varLambda \bigl(u^{n}_{xx}\bigr)^2 \,dx} =& - \frac{1}{2} \int_{0}^{L}{\varLambda u^{n+1}_{xx} u^{n}_{xx} \,dx} - \int _{0}^{L}{\mu\frac{v^{n+1} - v^{n}}{\Delta t} u^{n} \,dx} \\ &{}- M \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} u^{n}(L) -J \frac{v^{n+1}_x(L) - v^{n}_x(L)}{\Delta t} u^{n}_x(L) \\ &{}- k_1 \frac{u^{n+1}_x(L) + u^{n}_x(L)}{2} u^{n}_x(L) - k_2 \frac{u^{n+1}(L) + u^{n}(L)}{2} u^{n}(L) \\ &{}- d_1 \frac{v^{n+1}_x(L) + v^{n}_x(L)}{2} u^{n}_x(L) - d_2 \frac{v^{n+1}(L) + v^{n}(L)}{2} u^{n}(L) \\ &{}- c_1 \cdot\frac{\zeta_1^{n+1} + \zeta_1^{n}}{2} u^{n}_x(L) - c_2 \cdot\frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} u^{n}(L) . \end{aligned}$$
This yields for the norm of the time-discrete solution, as defined in (3.20):
$$\begin{aligned} & \bigl\| z^{n+1} \bigr\| ^2 - \bigl\| z^{n} \bigr\| ^2 \\ &\quad = M \biggl( - \frac{v^{n+1}(L) - v^{n}(L)}{\Delta t} \bigl(u^{n+1}(L) - u^{n}(L)\bigr) + \frac{v^{n+1}(L)^2 - v^{n}(L)^2}{2} \biggr) \\ &\qquad{} + J \biggl(- \frac{v^{n+1}_x(L) - v^{n}_x(L)}{\Delta t} \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) + \frac{v^{n+1}_x(L)^2 - v^{n}_x(L)^2}{2} \biggr) \\ &\qquad{} + \frac{k_1}{2} \bigl(- \bigl(u^{n+1}_x(L) + u^{n}_x(L) \bigr) \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) + u^{n+1}_x(L)^2 - u^{n}_x(L)^2 \bigr) \\ &\qquad{} + \frac{k_2}{2} \bigl( - \bigl(u^{n+1}(L) + u^{n}(L) \bigr) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) + u^{n+1}(L)^2 - u^{n}(L)^2 \bigr) \\ &\qquad{} - \frac{d_1}{2} \bigl(v^{n+1}_x(L) + v^{n}_x(L)\bigr) \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr) \\ &\qquad{} - \frac{d_2}{2} \bigl(v^{n+1}(L) + v^{n}(L)\bigr) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) \\ &\qquad{} - \frac{1}{2} c_1 \cdot\bigl(\zeta_1^{n+1} + \zeta_1^{n}\bigr) \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) + \frac{1}{2}\bigl( \zeta_1^{n+1}\bigr)^{\top} P_1 \zeta_1^{n+1} - \frac{1}{2}\bigl(\zeta_1^{n} \bigr)^{\top} P_1 \zeta_1^{n} \\ &\qquad{} - \frac{1}{2} c_2 \cdot\bigl(\zeta_2^{n+1} + \zeta_2^{n}\bigr) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) + \frac{1}{2}\bigl(\zeta_2^{n+1} \bigr)^{\top} P_2 \zeta_2^{n+1} - \frac{1}{2}\bigl(\zeta_2^{n}\bigr) ^{\top} P_2 \zeta_2^{n} . \end{aligned}$$
For the first six lines we use (3.21), and for the rest \(c_{j}=P_{j}b_{j}+q_{j}\tilde{\delta}_{j}\) (cf. (1.7)) to obtain:
$$\begin{aligned} \bigl\| z^{n+1} \bigr\| ^2 & = \bigl\| z^{n} \bigr\| ^2 - \frac{d_1}{\Delta t} \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr)^2 - \frac{d_2}{\Delta t}\bigl(u^{n+1}(L) - u^{n}(L)\bigr)^2 \\ &\quad {} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )^{\top}}{2} (P_1 b_1 + q_1 \tilde{\delta}_1) \bigl(u^{n+1}_x(L) - u^{n}_x(L)\bigr) \\ &\quad {} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )^{\top}}{2} (P_2 b_2 + q_2 \tilde{\delta}_2) \bigl(u^{n+1}(L) - u^{n}(L)\bigr) \\ &\quad {} + \frac{1}{2} \bigl(\zeta_1^{n+1} \bigr)^{\top} P_1 \zeta_1^{n+1} - \frac{1}{2} \bigl(\zeta_1^{n}\bigr)^{\top} P_1 \zeta_1^{n} + \frac{1}{2} \bigl( \zeta_2^{n+1}\bigr)^{\top} P_2 \zeta_2^{n+1} - \frac{1}{2} \bigl(\zeta_2^{n} \bigr)^{\top} P_2 \zeta_2^{n} . \end{aligned}$$
(B.3)
For the second and the third line of (B.3) we now use (3.21), (3.23), and (3.24) from the Crank-Nicholson scheme:
$$\begin{aligned} \bigl\| z^{n+1} \bigr\| ^2 = & \bigl\| z^{n} \bigr\| ^2 - \frac{d_1}{\Delta t} \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr)^2 - \frac{d_2}{\Delta t}\bigl(u^{n+1}(L) - u^{n}(L)\bigr)^2 \\ &{} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )^{\top}}{2} P_1 \biggl(\zeta_1^{n+1} - \zeta_1^{n} - \Delta t \; A_1 \frac{\zeta_1^n + \zeta_1^{n+1}}{2} \biggr) \\ &{} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )}{2} \cdot q_1 \tilde{\delta}_1 \bigl(u^{n+1}_x(L) - u^{n}_x(L) \bigr) \\ &{} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} ) ^{\top}}{2} P_2 \biggl(\zeta_2^{n+1} - \zeta_2^{n} - \Delta t \; A_2 \frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} \biggr) \\ &{} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )}{2} \cdot q_2 \tilde{\delta}_2 \bigl(u^{n+1}(L) - u^{n}(L)\bigr) \\ &{} + \frac{1}{2} \bigl(\zeta_1^{n+1} \bigr)^ {\top} P_1 \zeta_1^{n+1} - \frac{1}{2} \bigl(\zeta_1^{n}\bigr)^{\top} P_1 \zeta_1^{n} + \frac{1}{2} \bigl( \zeta_2^{n+1}\bigr)^{\top} P_2 \zeta_2^{n+1} - \frac{1}{2} \bigl(\zeta_2^{n} \bigr)^{\top} P_2 \zeta_2^{n}. \end{aligned}$$
Since P
j
, j=1,2 are symmetric matrices, this yields
$$\begin{aligned} \bigl\| z^{n+1} \bigr\| ^2 = & \bigl\| z^{n} \bigr\| ^2 - \frac{d_1}{\Delta t} \bigl(u^{n+1}_x(L)-u^{n}_x(L) \bigr)^2 - \frac{d_2}{\Delta t}\bigl(u^{n+1}(L) - u^{n}(L)\bigr)^2 \\ &{} + \Delta t\frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )^{\top}}{2} P_1 A_1 \frac{\zeta_1^n + \zeta_1^{n+1}}{2} \\ &{} - \frac{ ( \zeta_1^{n+1} + \zeta_1^{n} )}{2} \cdot q_1 \tilde{\delta}_1 \bigl(u^{n+1}_x(L) - u^{n}_x(L) \bigr) \\ &{} + \Delta t \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )^{\top}}{2} P_2 A_2 \frac{\zeta_2^{n+1} + \zeta_2^{n}}{2} \\ &{} - \frac{ ( \zeta_2^{n+1} + \zeta_2^{n} )}{2} \cdot q_2 \tilde{\delta}_2 \bigl(u^{n+1}(L) - u^{n}(L)\bigr) , \end{aligned}$$
which is the claimed result (by using (1.7)). □
Proof of Theorem 9
Let k∈{0,1,…,S} be arbitrary. Taylor’s Theorem yields ∀x∈[0,L]:
$$\begin{aligned} \frac{\breve{u}(t_{k+1},x)-\breve {u}(t_{k},x)}{\Delta t} = & \frac{\breve{u}_{t}(t_{k+1},x) + \breve{u}_{t}(t_{k},x)}{2} + \Delta t \, T^k_1(x), \end{aligned}$$
(B.4)
where
$$\begin{aligned} T^k_1 (x) = & \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{ \frac{\breve{u}_{ttt}(t, x)}{2 ( \Delta t )^2} (t_{k+1} - t)^2 \;dt} + \int _{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{\breve{u}_{ttt}(t, x)}{2 ( \Delta t )^2} (t_{k} - t)^2 \;dt} \\ &{} - \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{\frac{\breve{u}_{ttt}(t, x)}{2 \Delta t} (t_{k+1} - t) \;dt} + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{\breve{u}_{ttt}(t, x)}{2 \Delta t} (t_{k} - t)\;dt}. \end{aligned}$$
From (B.4), we obtain
$$\begin{aligned} \frac{\epsilon^{k+1} - \epsilon^{k}}{\Delta t} + \Delta t \, T_1^k = \frac{\varPhi^{k+1} + \varPhi^{k}}{2}. \end{aligned}$$
(B.5)
Multiplying (B.5) by μ(Φ
k+1−Φ
k) and integrating over [0,L] yields:
$$\begin{aligned} & \int_0^L{ \mu \frac{\epsilon^{k+1} - \epsilon^{k}}{\Delta t} \bigl(\varPhi^{k+1} - \varPhi^{k} \bigr) \;dx} \\ &\quad = \frac{1}{2} \int_0^L{ \mu\bigl( \varPhi^{k+1} \bigr)^2 \, dx} - \frac{1}{2} \int _0^L{ \mu\bigl(\varPhi^{k} \bigr)^2 \, dx}- \Delta t \int_0^L{ \mu T_1^k \bigl(\varPhi^{k+1} - \varPhi^{k} \bigr)\;dx }. \end{aligned}$$
(B.6)
Furthermore, from (3.3) with \(t = t_{k + \frac{1}{2}}\) and Taylor’s Theorem, we get \(\forall w \in\tilde{H}^{2}_{0}(0, L)\):
$$\begin{aligned} &\int^{L}_{0} {\mu \frac{u_t(t_{k+1},x) - u_t(t_{k},x)}{\Delta t} w \,dx} + \int^{L}_{0}{ \varLambda\frac{u_{xx}(t_{k+1},x) + u_{xx}(t_{k},x)}{2} w_{xx} \,dx} \\ &\quad {}+ M \frac{u_t(t_{k+1}, L) - u_t(t_{k}, L)}{\Delta t} w(L) + J \frac {u_{tx}(t_{k+1}, L) - u_{tx}(t_{k}, L)}{\Delta t} w_{x}(L) \\ &\quad {}+ k_1 \frac{u_{x}(t_{k+1}, L) + u_{x}(t_{k}, L) }{2} w_x(L) + k_2 \frac{u(t_{k+1}, L) + u(t_{k}, L) }{2} w(L) \\ &\quad {} + d_1 \frac{u_{tx}(t_{k+1}, L) + u_{tx}(t_{k}, L)}{2} w_x(L) + d_2 \frac{u_{t}(t_{k+1}, L) + u_{t}(t_{k}, L) }{2} w(L) \\ &\quad {} + c_1 \cdot\frac{\zeta_1(t_{k+1}) + \zeta_1(t_k)}{2} w_x(L) + c_2 \cdot\frac{\zeta_2(t_{k+1}) + \zeta_2(t_k)}{2} w(L) = \Delta t \, T^k_2 (w), \end{aligned}$$
(B.7)
with the functional \(T^{k}_{2} \colon\tilde{H}^{2}_{0}(0, L) \rightarrow \mathbb{R}\) defined as
$$\begin{aligned} T^k_2(w) &=\int^{L}_{0} {\mu\biggl( \int _{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{tttt}(t,x)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttt}(t,x)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \biggr) w \, dx} \\ &\quad {} + \int^{L}_{0}{\varLambda\biggl( \int _{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int_{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_{xx} \,dx} \\ &\quad {} + M \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{tttt}(t,L)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttt}(t,L)}{2 (\Delta t)^2} ( t_{k} - t )^2 \,dt } \biggr) w(L) \\ &\quad {} + J \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{u_{ttttx}(t,L)}{2 (\Delta t)^2} ( t_{k+1} - t )^2 \,dt } + \int_{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttttx}(t,L)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \biggr) w_x(L) \\ &\quad {} + k_1 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttx}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttx}(t,L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_x(L) \\ &\quad {} + k_2 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{tt}(t,L)}{2 \Delta t} ( t_{k+1} - t ) \,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tt}(t,L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w(L) \\ &\quad {} + d_1 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{tttx}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttx}(t,L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_x(L) \\ &\quad {} + d_2 \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttt}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttt}(t,L)}{2 \Delta t} ( t_{k} - t ) \,dt } \biggr) w(L) \\ &\quad {} + c_1 \cdot\biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w_x(L) \\ &\quad {} + c_2 \cdot\biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) w(L). \end{aligned}$$
(B.8)
Now, from (3.22) and (B.7) follows ∀w
h
∈W
h
:
$$\begin{aligned} & \int^{L}_{0} {\mu\frac{\varPhi^{k+1}- \varPhi^{k}}{\Delta t} w_h \,dx} + \int^{L}_{0}{\varLambda \frac{\epsilon_{xx}^{k+1} + \epsilon_{xx}^k}{2} (w_h)_{xx} \,dx} \\ &\qquad {}+ M \frac{\varPhi^{k+1}(L) - \varPhi^{k}(L)}{\Delta t} (w_h) (L) + J \frac{\varPhi^{k+1}_x(L) - \varPhi^{k}_x(L)}{\Delta t} (w_h)_{x}(L) \\ &\qquad {}+ k_1 \frac{\epsilon^{k+1}_x(L) + \epsilon^{k}_x(L)}{2} (w_h)_x(L) + k_2 \frac{\epsilon^{k+1}(L) + \epsilon^{k}(L) }{2} w_h(L) \\ &\qquad {}+ d_1 \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} (w_h)_x(L) + d_2 \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} w_h(L) \\ &\qquad {}+ c_1 \cdot\frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^k}{2} (w_h)_x(L) + c_2 \cdot\frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^k}{2} w_h(L) \\ &\quad = -\Delta t \, T^k_2 (w_h) + G^{k}_1(w_h), \end{aligned}$$
(B.9)
where the functional \(G^{k}_{1}(w_{h})\) is given by
$$\begin{aligned} G^{k}_1(w_h) &:= \int^{L}_{0} {\mu \frac{u^e_t(t_{k+1},x) - u^e_t(t_{k},x)}{\Delta t} w_h \,dx} \\ &\hphantom{:=\,}{}+ M \frac{u^e_t(t_{k+1}, L) - u^e_t(t_{k}, L)}{\Delta t} w_h(L) + J \frac{u^e_{tx}(t_{k+1}, L) - u^e_{tx}(t_{k}, L)}{\Delta t} (w_h)_{x}(L) \\ &\hphantom{:=\,}{}+ d_1 \frac{u^e_{tx}(t_{k+1}, L) + u^e_{tx}(t_{k}, L)}{2} (w_h)_x(L) + d_2 \frac{u^e_{t}(t_{k+1}, L) + u^e_{t}(t_{k}, L) }{2} w_h(L). \end{aligned}$$
(B.10)
A Taylor expansion of ζ
j
about \(t_{k+\frac{1}{2}}\) yields with (3.5):
$$ \begin{aligned} & \frac{\zeta_1(t_{k+1}) - \zeta_1(t_{k})}{\Delta t} - A_1 \frac{\zeta _1(t_{k+1}) + \zeta_1(t_{k})}{2} - b_1 \frac{u_{tx}(t_{k+1}, L) + u_{tx}(t_{k}, L)}{2} = \Delta t \, T_3^k, \\ & \frac{\zeta_2(t_{k+1}) - \zeta_2(t_{k})}{\Delta t} - A_2 \frac{\zeta _2(t_{k+1}) + \zeta_2(t_{k})}{2} - b_2 \frac{u_{t}(t_{k+1}, L) + u_{t}(t_{k}, L)}{2} = \Delta t \, T_4^k , \end{aligned} $$
(B.11)
with
$$\begin{aligned} T_3^k = & \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_1)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int _{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{(\zeta_1)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \\ &{} - A_1 \biggl( \int_{t_{k + \frac{1}{2}}}^{t_{k +1 }}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_1)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) \\ &{} - b_1 \biggl( \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{ \frac{u_{tttx}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{tttx}(t, L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr), \\ T_4^k = & \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{(\zeta_2)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k+1} - t )^2\,dt } + \int _{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{(\zeta_2)_{ttt}(t)}{2 (\Delta t)^2} ( t_{k} - t )^2\,dt } \\ &{} - A_2 \biggl( \int_{t_{k+ \frac{1}{2}}}^{t_{k+1 }}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{(\zeta_2)_{tt}(t)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) \\ &{} - b_2 \biggl( \int_{t_{k + \frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttt}(t,L)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttt}(t, L)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr). \end{aligned}$$
Using (3.23), (3.24), and (B.11), we get
$$ \begin{aligned} & \frac{\zeta^{k+1}_{e,1} - \zeta^{k}_{e,1}}{\Delta t} - A_1 \frac{\zeta ^{k+1}_{e,1} + \zeta^{k}_{e,1}}{2} - b_1 \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} = -\Delta t \, T_3^k - G^{k}_2, \\ & \frac{\zeta^{k+1}_{e,2} - \zeta^{k}_{e,2}}{\Delta t} - A_2 \frac{\zeta ^{k+1}_{e,2} + \zeta^{k}_{e,2}}{2} - b_2 \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} = -\Delta t \, T_4^k - G^{k}_3, \end{aligned} $$
(B.12)
with
$$\begin{aligned} G_2^k = & b_1 \frac{u^e_{tx}(t_{k+1}, L) + u^e_{tx}(t_{k}, L)}{2}, \\ G_3^k = & b_2 \frac{u^e_{t}(t_{k+1}, L) + u^e_{t}(t_{k}, L)}{2}. \end{aligned}$$
In (B.9) we now take \(w_{h} := \Delta t \frac{\varPhi ^{k+1} + \varPhi^{k}}{2} \in W_{h}\), due to (B.5). Using (B.6) and (B.12), yields:
$$\begin{aligned} \bigl\| z^{k+1}_e \bigr\| ^2 - \bigl\| z^{k}_e \bigr\| ^2 = & - (\Delta t)^2 \frac{1}{2} \int_{0}^{L}{ \varLambda\bigl( \epsilon^{k+1}_{xx} + \epsilon^{k}_{xx} \bigr) \bigl(T^k_1\bigr)_{xx} \;dx} + \frac{\Delta t}{2} G^k_1\bigl(\varPhi^{k+1} + \varPhi^{k}\bigr) \\ &{}- (\Delta t)^2 \biggl( k_1 \frac{\epsilon_x^{k+1}(L) + \epsilon_x^{k}(L)}{2} \bigl(T_1^k\bigr)_x(L) + k_2 \frac{\epsilon^{k+1}(L) + \epsilon^{k}(L)}{2} T_1^k(L) \biggr) \\ &{} - \frac{\Delta t}{2} \biggl( q_1 \frac{\zeta^{k+1}_{e,1} + \zeta ^{k}_{e,1}}{2} + \tilde{ \delta}_1 \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} \biggr)^2 \\ &{} - \Delta t \delta_1 \biggl( \frac{\varPhi^{k+1}_x(L) + \varPhi^{k}_x(L)}{2} \biggr)^2 - \Delta t \frac{\epsilon_1}{2} \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \cdot P_1 \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \\ &{} - P_1 \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_3 + \Delta t \, G^k_2 \bigr) \\ &{} - \frac{\Delta t}{2} \biggl( q_2 \frac{\zeta^{k+1}_{e,2} + \zeta ^{k}_{e,2}}{2} + \tilde{ \delta}_2 \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} \biggr)^2 \\ &{} - \Delta t \delta_2 \biggl( \frac{\varPhi^{k+1}(L) + \varPhi^{k}(L)}{2} \biggr)^2 - \Delta t \frac{\epsilon_2}{2} \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \cdot P_2 \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \\ &{} - P_2 \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_4 + \Delta t \, G^k_3 \bigr) \\ &{}- \frac{1}{2} (\Delta t)^2 T^k_2 \bigl(\varPhi^{k+1} + \varPhi^{k}\bigr). \end{aligned}$$
Therefore,
$$\begin{aligned} \bigl\| z^{k+1}_e \bigr\| ^2 - \bigl\| z^{k}_e \bigr\| ^2 \le& - (\Delta t)^2 \frac{1}{2} \int_{0}^{L}{ \varLambda\bigl( \epsilon^{k+1}_{xx} + \epsilon^{k}_{xx} \bigr) \bigl(T^k_1\bigr)_{xx} \;dx} + \frac{\Delta t}{2} G^k_1\bigl(\varPhi^{k+1} + \varPhi^{k}\bigr) \\ &{}- (\Delta t)^2 \biggl( k_1 \frac{\epsilon_x^{k+1}(L) + \epsilon_x^{k}(L)}{2} \bigl(T_1^k\bigr)_x(L) + k_2 \frac{\epsilon^{k+1}(L) + \epsilon^{k}(L)}{2} T_1^k(L) \biggr) \\ &{} - P_1 \frac{\zeta_{e,1}^{k+1} + \zeta_{e,1}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_3 + \Delta t \, G^k_2 \bigr) \\ &{} - P_2 \frac{\zeta_{e,2}^{k+1} + \zeta_{e,2}^{k}}{2} \cdot\bigl( (\Delta t)^2 T^k_4 + \Delta t \, G^k_3 \bigr) \\ &{}- \frac{1}{2} (\Delta t)^2 T^k_2 \bigl(\varPhi^{k+1} + \varPhi^{k}\bigr). \end{aligned}$$
(B.13)
Next, from (B.10) follows:
$$\begin{aligned} \bigl|G^{k}_1\bigl(\varPhi^{k+1} + \varPhi^k\bigr)\bigr| \le& C \biggl( \biggl\| \frac{u^e_t(t_{k+1},x) - u^e_t(t_{k},x)}{\Delta t} \biggr\| _{L^2}^2 + \bigl\| \varPhi^{k+1} + \varPhi^k \bigr\| _{L^2}^2 \\ &{} + \biggl| \frac{u^e_t(t_{k+1}, L) - u^e_t(t_{k}, L)}{\Delta t}\biggr|^2 + \biggl| \frac {u^e_{tx}(t_{k+1}, L) - u^e_{tx}(t_{k}, L)}{\Delta t}\biggr|^2 \\ &{}+ \biggl|\frac{u^e_{tx}(t_{k+1}, L) + u^e_{tx}(t_{k}, L)}{2}\biggr|^2 + \biggl|\frac {u^e_{t}(t_{k+1}, L) + u^e_{t}(t_{k}, L) }{2}\biggr|^2 \\ &{}+ \bigl| \varPhi^{k+1}(L) + \varPhi^k(L)\bigr|^2 + \bigl| \varPhi_x^{k+1}(L) + \varPhi_x^{k}(L)\bigr|^2 \biggr) \end{aligned}$$
(B.14)
$$\begin{aligned} \le& C \biggl( \bigl\| \varPhi^{k+1} + \varPhi^k \bigr\| _{L^2}^2 + \bigl| \varPhi^{k+1}(L) + \varPhi^k(L)\bigr|^2 + \bigl| \varPhi_x^{k+1}(L) + \varPhi_x^{k}(L)\bigr|^2 \\ &{} + \frac{1}{\Delta t} \int_{t_k}^{t_k+1}\bigl\| u^e_{tt}(t) \bigr\| ^2_{L^2} + \bigl|u^e_{tt}(t,L)\bigr|^2 \\ &{}+\bigl|u^e_{ttx}(t,L)\bigr|^2 \, dt + \bigl\| u^e_t \bigr\| _{C([t_{k},t_{k+1}]; H^2)}^2 \biggr). \end{aligned}$$
(B.15)
It can easily be seen that
$$\begin{aligned} \bigl\| T^k_1\bigr\| ^2_{H^2} \le&\Delta t \int_{t_k}^{t_{k+1}}{\bigl\| \breve{u}_{ttt}(t) \bigr\| ^2_{H^2} \, dt} \le C \Delta t \int _{t_k}^{t_{k+1}}{\bigl\| u_{ttt}(t) \bigr\| ^2_{H^2} \, dt}, \end{aligned}$$
(B.16)
$$\begin{aligned} \bigl\| T^k_3\bigr\| ^2 \le& C \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| u_{ttt}(t) \bigr\| ^2_{H^2} + \bigl\| (\zeta_1)_{tt} \bigr\| ^2 + \bigl\| (\zeta_1)_{ttt}\bigr\| ^2 \, dt}, \end{aligned}$$
(B.17)
$$\begin{aligned} \bigl\| T^k_4\bigr\| ^2 \le& C \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| u_{ttt}(t) \bigr\| ^2_{H^1} + \bigl\| (\zeta_2)_{tt} \bigr\| ^2 + \bigl\| (\zeta_2)_{ttt}\bigr\| ^2 \, dt}, \end{aligned}$$
(B.18)
and
$$\begin{aligned} T^k_2\bigl(\varPhi^k\bigr) \le& C \biggl( \bigl\| \varPhi^k \bigr\| ^2_{L^2} + \bigl| \varPhi^k(L) \bigr|^2 + \bigl| \varPhi^k_x(L) \bigr|^2 \\ &{} + \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| u_{tt} (t)\bigr\| _{H^4}^2 + \bigl\| u_{ttt}(t) \bigr\| _{H^2}^2 + \bigl\| u_{tttt}(t) \bigr\| _{H^2}^2 \, dt} \\ &{} + \Delta t \int_{t_k}^{t_{k+1}}{\bigl\| ( \zeta_1)_{tt} (t)\bigr\| ^2 + \bigl\| (\zeta_2)_{tt} (t)\bigr\| ^2 \, dt} \biggr). \end{aligned}$$
(B.19)
For the above estimate, we rewrote the second term of \(T^{k}_{2}(\varPhi ^{k})\) in (B.8) as:
$$\begin{aligned} &\int^{L}_{0}{ \biggl( \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{ \frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k+1} - t )\,dt } - \int _{t_{k}}^{t_{k+\frac{1}{2}}}{ \frac{u_{ttxx}(t,x)}{2 \Delta t} ( t_{k} - t )\,dt } \biggr) \varPhi^k_{xx} \,dx} \\ &\quad = \int_{t_{k+\frac{1}{2}}}^{t_{k+1}}{\frac{t_{k+1} - t}{2 \Delta t} \biggl( u_{ttxx}(t,L) \varPhi^k_x(L) - u_{ttxxx}(t,L) \varPhi^k(L) + \int_{0}^{L}{u_{ttxxxx}(t,x) \varPhi^k \, dx} \biggr) \,dt} \\ &\qquad {}- \int_{t_{k}}^{t_{k+\frac{1}{2}}}{\frac{t_{k} - t}{2 \Delta t} \biggl( u_{ttxx}(t,L) \varPhi^k_x(L) - u_{ttxxx}(t,L) \varPhi^k(L) + \int_{0}^{L}{u_{ttxxxx}(t,x) \varPhi^k \, dx} \biggr) \,dt}, \end{aligned}$$
using \(\varPhi^{k}(0) = \varPhi^{k}_{x}(0) = 0\), and then the Sobolev embedding Theorem. From (B.13)–(B.19), now follows:
$$\begin{aligned} \bigl\| z^{k+1}_e \bigr\| ^2 - \bigl\| z^{k}_e \bigr\| ^2 & \le C \Biggl( \Delta t \bigl( \bigl\| z^{k+1}_e \bigr\| ^2 + \bigl\| z^{k}_e \bigr\| ^2\bigr) + \Delta t \bigl\| u^e_t \bigr\| _{C([t_{k},t_{k+1}]; H^2)}^2 \\ &\quad {}+ \int_{t_k}^{t_{k+1}}{\bigl\| u^e_{tt}(t) \bigr\| ^2_{L^2} + \bigl|u^e_{tt}(t,L)\bigr|^2 +\bigl|u^e_{ttx}(t,L)\bigr|^2 \, dt} \\ &\quad {} + (\Delta t)^4 \sum_{i=1}^{2}{ \int_{t_k}^{t_{k+1}}{ \bigl\| (\zeta_i)_{tt} \bigr\| ^2 + \bigl\| (\zeta_i)_{ttt}\bigr\| ^2 \, dt}} \\ &\quad {} + (\Delta t)^4 \int_{t_k}^{t_{k+1}}{ \bigl\| u_{tt} (t)\bigr\| _{H^4}^2 + \bigl\| u_{ttt}(t) \bigr\| _{H^2}^2 + \bigl\| u_{tttt}(t) \bigr\| _{H^2}^2 \, dt} \Biggr). \end{aligned}$$
(B.20)
Let now n∈{1,…,S}. Assuming \(\Delta t \le\frac{1}{2 C}\) (with C from (B.20)), and summing (B.20) over k∈{0,…,n}, gives:
$$\begin{aligned} \frac{1}{2} \bigl\| z^{n+1}_e \bigr\| ^2 & \le \frac{3}{2} \bigl\| z^{0}_e \bigr\| ^2 + C \Biggl( \Delta t \sum_{k=1}^{n}{ \bigl\| z^{k}_e \bigr\| ^2} + \bigl\| u^e_t \bigr\| _{C([0, T]; H^2)}^2 + \bigl\| u^e_{tt} \bigr\| ^2_{L^2(0,T; H^2)} \\ &\quad {} + (\Delta t)^4 \Biggl[ \sum_{i = 1}^2{ \bigl\| (\zeta_i)_{tt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2 + \bigl\| ( \zeta_i)_{ttt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2} \\ &\quad {} + \bigl\| u_{tt} (t) \bigr\| _{L^2(0, T; H^4)}^2 + \bigl\| u_{ttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 + \bigl\| u_{tttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 \Biggr] \Biggr). \end{aligned}$$
(B.21)
Finally, using the discrete-in-time Gronwall inequality and (B.4), we obtain:
$$\begin{aligned} \bigl\| z^{n+1}_e \bigr\| ^2 & \le C \Biggl( \bigl\| z^{0}_e \bigr\| ^2 + h^4 \bigl( \| u_t \|_{C([0, T]; H^4)}^2 +\| u_{tt} \|^2_{L^2(0,T; H^4)} \bigr) \\ &\quad {} + (\Delta t)^4 \Biggl[ \sum_{i = 1}^2{ \bigl\| (\zeta_i)_{tt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2 + \bigl\| ( \zeta_i)_{ttt} (t)\bigr\| _{L^2(0, T; \mathbb{R}^n)}^2} \\ &\quad {} + \bigl\| u_{tt} (t) \bigr\| _{L^2(0, T; H^4)}^2 + \bigl\| u_{ttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 + \bigl\| u_{tttt}(t) \bigr\| _{L^2(0, T; H^2)}^2 \Biggr] \Biggr). \end{aligned}$$
(B.22)
The result now follows from (B.22), (3.25), and the triangle inequality. □