Summary
This review is concerned with three classes of quantum semiconductor equations: Schrödinger models, Wigner models, and fluid-type models. For each of these classes, some phenomena on various time and length scales are presented and the connections between micro-scale and macro-scale models are explained. We discuss Schrödinger-Poisson systems for the simulation of quantum waveguides and illustrate the importance of using open boundary conditions. We present Wigner-based semiconductor models and sketch their mathematical analysis. In particular we discuss the Wigner-Poisson-Focker-Planck system, which is the starting point of deriving subsequently the viscous quantum hydrodynamic model. Furthermore, a unified approach to derive macroscopic quantum equations is presented. Two classes of models are derived from a Wigner equation with elastic and inelastic collisions: quantum hydrodynamic equations and their variants, as well as quantum diffusion models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Ancona and G. Iafrate. Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39 (1989), 9536–9540.
M. Ancona and H. Tiersten. Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35 (1987), 7959–7965.
A. Arnold. Self-consistent relaxation-time models in quantum mechanics. Comm. PDE 21(3 & 4) (1995), 473–506.
A. Arnold. The relaxation-time von Neumann-Poisson equation. in: Proceedings of ICIAM 95, Hamburg (1995), Oskar Mahrenholtz, Reinhard Mennicken (eds.), ZAMM 76–S2 (1996), 293–296.
A. Arnold. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6(1–4) (1998) 313–319.
A. Arnold, E. Dhamo, and C. Manzini. The Wigner-Poisson-Fokker-Planck system: global-in-time solution and dispersive effects, submitted (2005). Technical Report 10/04-N, Angewandte Mathematik, Universität Münster.
A. Arnold. Mathematical concepts of open quantum boundary conditions. Transp. Theory Stat. Phys. 30(4–6) (2001) 561–584.
A. Arnold, E. Dhamo, and C. Manzini. Dispersive effects in quantum kinetic equations, submitted (2005). Technical Report 07/05-N, Angewandte Mathematik, Universität Münster.
A. Arnold, M. Ehrhardt, I. Sofronov. Approximation, stability and fast calculation of non-local boundary conditions for the Schrödinger equation. Commun. Mathematical Sciences 1–3 (2003) 501–556.
A. Arnold, J.L. López, P.A. Markowich and J. Soler. An analysis of quantum Fokker-Planck models: A Wigner function approach. Rev. Mat. Iberoam. 20(3) (2004), 771–814.
A. Arnold, M. Schulte. Discrete transparent boundary conditions for the Schrödinger equatioon — a compact higher order scheme. in preparation 2006.
A. Arnold, C. Sparber. Conservative quantum dynamical semigroups for mean-field quantum diffusion models. Comm. Math. Phys. 251(1) (2004), 179–207.
A. Arnold, C. Ringhofer. Operator splitting methods applied to spectral discretizations of quantum transport equations. SIAM J. of Num. Anal. 32–6 (1995) 1876–1894.
N. Ben Abdallah and P. Degond. On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37 (1996), 3308–3333.
N. Ben Abdallah, F. Méhats, O. Pinaud. On an open transient Schrödinger-Poisson system. Math. Models Methods Appl. Sci. 15–5 (2005), 667–688.
N. Ben Abdallah, O. Pinaud. Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation. J. Comput. Phys. 213–1 (2006) 288–310.
N. Ben Abdallah and A. Unterreiter. On the stationary quantum driftdiffusion model. Z. Angew. Math. Phys. 49 (1998), 251–275.
P. Bhatnagar, E. Gross, and M. Krook. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Review 94 (1954), 511–525.
F. Brezzi, P.A. Markowich. The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation. Math. Methods Appl. Sci. 14(1) (1991), 35–61.
A. Caldeira and A. Leggett. Path integral approach to quantum Brownian motion. Phys. A 121A (1983), 587–616.
J.A. Cañizo, J.L. López, J. Nieto. Global L 1-theory and regularity for the 3D nonlinear Wigner-Poisson-Fokker-Planck system. J. Diff. Eq. 198 (2004), 356–373.
F. Castella. The Vlasov-Poisson-Fokker-Planck System with Infinite Kinetic Energy. Indiana Univ. Math. J. 47(3) (1998), 939–964.
F. Castella, L. Erdös, F. Frommlet, and P. Markowich. Fokker-Planck equations as scaling limits of reversible quantum systems. J. Stat. Phys. 100 (2000), 543–601.
P. Degond, S. Génieys, and A. Jüngel. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl. 76 (1997), 991–1015.
P. Degond, F. Méhats, and C. Ringhofer. Quantum hydrodynamic models derived from the entropy principle. Contemp. Math. 371 (2005), 107–131.
P. Degond, F. Méhats, and C. Ringhofer. Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118 (2005), 625–665.
P. Degond and C. Ringhofer. Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112 (2003), 587–628.
B. Derrida, J. L. Lebowitz, E. R. Speer, and H. Spohn. Fluctuations of a stationary nonequilibrium interface. Phys. Rev. Lett. 67 (1991), 165–168.
E. Dhamo, A. Arnold. An operator splitting method on the periodic Wigner-Poisson-Fokker-Planck system. in preparation, 2006.
J. Dolbeault, I. Gentil, and A. Jüngel. A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities. To appear in Commun. Math. Sci., 2006.
A. El Ayyadi and A. Jüngel. Semiconductor simulations using a coupled quantum drift-diffusion Schrödinger-Poisson model. SIAM J. Appl. Math. 66 (2005), 554–572.
D. Ferry and J.-R. Zhou. Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys. Rev. B 48 (1993), 7944–7950.
W.R. Frensley. Wigner-function model of a resonant-tunneling semiconductor device Phys. Rev. B 36 (1987) 1570–1580.
S. Gallego and F. Méhats. Entropic discretization of a quantum drift-diffusion model. SIAM J. Numer. Anal. 43 (2005), 1828–1849.
I. Gamba and A. Jüngel. Positive solutions of singular equations of second and third order for quantum fluids. Arch. Rat. Mech. Anal. 156 (2001), 183–203.
I. Gamba and A. Jüngel. Asymptotic limits in quantum trajectory models. Commun. Part. Diff. Eqs. 27 (2002), 669–691.
C. Gardner. The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994), 409–427.
U. Gianazza, G. Savaré, and G. Toscani. A fourth-order nonlinear PDE as gradient flow of the Fisher information in Wasserstein spaces. In preparation, 2006.
H.L. Gruvin, T.R. Govindan, J.P. Kreskovsky, M.A. Stroscio. Transport via the Liouville equation and moments of quantum distribution functions, Solid State Electr. 36 (1993), 1697–1709.
M. Gualdani and A. Jüngel. Analysis of the viscous quantum hydrodynamic equations for semiconductors. Europ. J. Appl. Math. 15 (2004), 577–595.
M. T. Gyi and A. Jüngel. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv. Diff. Eqs. 5 (2000), 773–800.
F. Huang, H.-L. Li, A. Matsumura, and S. Odanaka. Well-posedness and stability of multi-dimensional quantum hydrodynamics in whole space. Preprint, Osaka University, Japan, 2004.
A. Jüngel. A steady-state quantum Euler-Poisson system for semiconductors. Commun. Math. Phys. 194 (1998), 463–479.
A. Jüngel. Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, Basel, 2001.
A. Jüngel and H.-L. Li. Quantum Euler-Poisson systems: global existence and exponential decay. Quart. Appl. Math. 62 (2004), 569–600.
A. Jüngel, H.-L. Li, and A. Matsumura. The relaxation-time limit in the quantum hydrodynamic equations for semiconductors. To appear in J. Diff. Eqs., 2006.
A. Jüngel, M. C. Mariani and D. Rial. Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Meth. Appl. Sci. 12 (2002), 485–495.
A. Jüngel and D. Matthes. A derivation of the isothermal quantum hydrodynamic equations using entropy minimization. Z. Angew. Math. Mech. 85 (2005), 806–814.
A. Jüngel and D. Matthes. An algorithmic construction of entropies in higher-order nonlinear PDEs. Nonlinearity 19 (2006), 633–659.
A. Jüngel and D. Matthes. The multi-dimensional Derrida-Lebowitz-Speer-Spohn equation. In preparation, 2006.
A. Jüngel, D. Matthes, and J.-P. Milišić. Derivation of new quantum hydrodynamic equations using entropy minimization. Preprint, Universität Mainz, 2005.
A. Jüngel and J.-P. Milišić. Macroscopic quantum models with and without collisions. To appear in Proceedings of the Sixth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto, Japan. Transp. Theory Stat. Phys., 2006.
A. Jüngel and J.-P. Milišić. Numerical approximation of the nonisothermal quantum hydrodynamic equations for semiconductors with viscous terms. In preparation, 2006.
A. Jüngel and R. Pinnau. Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems. SIAM J. Math. Anal. 32 (2000), 760–777.
A. Jüngel and R. Pinnau. A positivity-preserving numerical scheme for a nonlinear fourth-order parabolic equation. SIAM J. Num. Anal. 39 (2001), 385–406.
A. Jüngel and S. Tang. Numerical approximation of the viscous quantum hydrodynamic model for semiconductors. To appear in Appl. Numer. Math., 2006.
A. Jüngel and I. Violet. The quasineutral limit in the quantum drift-diffusion equations. Preprint, Universität Mainz, Germany, 2005.
N. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer. Self-consistent study of the resonant tunneling diode. Phys. Rev. B 39 (1989), 7720–7735.
H. Kosina, M. Nedjalkov. Wigner function-based device modeling. in: Handbook of Theoretical and Computational Nanotechnology vol. 10 (eds: M. Rieth, W. Schommers), American Scientific Publishers, 2006
C. Levermore. Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996), 1021–1065.
I.B. Levinson. Translational invariance in uniform fields and the equation for the density matrix in the Wigner representation. Sov. Phys. JETP 30 (1970) 362–367.
H.-L. Li and C.-K. Lin. Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors. Commun. Math. Phys. 256 (2005), 195–212.
G. Lindblad. On the generators of quantum mechanical semigroups. Comm. Math. Phys. 48 (1976), 119–130.
P.L. Lions. T. Paul. Sur les mesures de Wigner. Rev. Math. Iberoam., 9(3) (1993), 553–561.
E. Madelung. Quantentheorie in hydrodynamischer Form. Z. Physik 40 (1927), 322–326.
P. Markowich, C. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, Vienna, 1990.
D.A. Rodrigues, A.D. Armour. Quantum master equation descriptions of a nanomechanical resonator coupled to a single-electron transistor. New J. Phys. 7 (2005) 251–272.
B. Perthame. Time decay, propagation of low moments and dispersive effects for kinetic equations. Comm. P.D.E. 21(1 & 2) (1996), 659–686.
L. Ramdas Ram-Mohan. Finite element and boundary emelent applications in quantum mechanics. Oxford Univ. Press, 2002.
C. Ringhofer. A spectral method for the numerical simulation of quantum tunneling phenomena SIAM J. Num. Anal. 27 (1990) 32–50.
H. Risken. The Fokker-Planck equation. Springer, 1984.
C. Sparber, J.A. Carrillo, J. Dolbeault, P.A. Markowich. On the long time behavior of the quantum Fokker-Planck equation. Monatsh. f. Math. 141(3) (2004), 237–257.
M.A. Stroscio. Moment-equation representation of the dissipative quantum Liouville equation. Superlattices and microstructures 2 (1986), 83–87.
E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40 (1932), 749–759.
A. Zisowsky, A. Arnold, M. Ehrhardt, T. Koprucki. Discrete Transparent Boundary Conditions for transient kp-Schrödinger Equations with Application to Quantum-Heterostructures. ZAMM 85 11 (2005) 793–805.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arnold, A., Jüngel, A. (2006). Multi-Scale Modeling of Quantum Semiconductor Devices. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_12
Download citation
DOI: https://doi.org/10.1007/3-540-35657-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35656-1
Online ISBN: 978-3-540-35657-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)